+
Here’s how Bogibeel Bridge was constructed!
ROADS & HIGHWAYS

Here’s how Bogibeel Bridge was constructed!

India recently welcomed one of its biggest landmarks! The country’s longest rail-cum-road bridge—Bogibeel Bridge over river Brahmaputra in Assam—was recently inaugurated, after having encountered several engineering and other challenges, almost 22 years after its foundation stone was laid in January 1997.

For the construction of this mammoth bridge, HCC set-up huge facilities on the left bank of the river for the three sequences of fabrication, assembly and launching.

Fabrication: Fabrication shops of 2,000 mt per month capacity were set up with two parallel bays. The team had assembled customised platforms in house to fabricate and fit various joints employing gas metal arc welding (GMAW). To ensure error-free welding, magnetic particle testing, dry penetration testing and ultrasonic testing were deployed. A specialised beam-making CMM machine from Italy has been used for the first time in India for the fabrication of box and I-sections using the submerged arc welding (SAW) procedure. A blasting gun was used to achieve the surface roughness of SA 2½ before applying paint.

Assembly: Thereafter, these fabricated sections were moved to the assembly shop where they were installed on their designated beds. They were correctly positioned through jacking and welded by GMAW process. These segments were arranged in a sequence and sent for the vertical assembly using horizontal lifters. After installation of the top and bottom girders, the final truss bridge dimension design chambers were examined thoroughly and approved to complete the fitout. A nose was fabricated and fitted on the first truss before launching it on the piers.

Launching: While determining the methodology of erecting the steel trusses on pillars, the engineers had two choices: lift the spans with floating cranes or erect them with a launching truss. They had to choose the more practical and economical option. After weighing the pros and cons, the HCC team came up with the solution of pulling the steel trusses with a set of jacks and winches on the pillars. This eliminated the need to enter the river, which was often turbulent during monsoons. Besides, it also ensured safer working conditions, precluded the mobilisation of a giant set-up on either side of the river having a width of 4.8 km, and accelerated the pace of the project. A 1,000-tonne hydraulic jack and strand jacks linked with the substructures have been used for moving the steel truss over the pillars. Two sets of steel cable strands were anchored to the end cross beams of the truss and hauled by hydraulic jacks. The truss slides over the launching bearing with the help of sliding plates, which were inserted at one end and taken out at the other, thereby moving the truss towards its desired position. To limit the required launching forces, the superstructure was pulled in four launching segments of 10 spans each. Thus, the superstructure was pulled over the pillars just like a train of 10 spans, with each span weighing 1,700 mt. Finally, the launching bearings were replaced by final bearings. The tracks were laid and the road was constructed adapting RCC construction. After fulfilling the electrical and other ancillary requirements, the assignment was completed.

India recently welcomed one of its biggest landmarks! The country’s longest rail-cum-road bridge—Bogibeel Bridge over river Brahmaputra in Assam—was recently inaugurated, after having encountered several engineering and other challenges, almost 22 years after its foundation stone was laid in January 1997. For the construction of this mammoth bridge, HCC set-up huge facilities on the left bank of the river for the three sequences of fabrication, assembly and launching. Fabrication: Fabrication shops of 2,000 mt per month capacity were set up with two parallel bays. The team had assembled customised platforms in house to fabricate and fit various joints employing gas metal arc welding (GMAW). To ensure error-free welding, magnetic particle testing, dry penetration testing and ultrasonic testing were deployed. A specialised beam-making CMM machine from Italy has been used for the first time in India for the fabrication of box and I-sections using the submerged arc welding (SAW) procedure. A blasting gun was used to achieve the surface roughness of SA 2½ before applying paint. Assembly: Thereafter, these fabricated sections were moved to the assembly shop where they were installed on their designated beds. They were correctly positioned through jacking and welded by GMAW process. These segments were arranged in a sequence and sent for the vertical assembly using horizontal lifters. After installation of the top and bottom girders, the final truss bridge dimension design chambers were examined thoroughly and approved to complete the fitout. A nose was fabricated and fitted on the first truss before launching it on the piers. Launching: While determining the methodology of erecting the steel trusses on pillars, the engineers had two choices: lift the spans with floating cranes or erect them with a launching truss. They had to choose the more practical and economical option. After weighing the pros and cons, the HCC team came up with the solution of pulling the steel trusses with a set of jacks and winches on the pillars. This eliminated the need to enter the river, which was often turbulent during monsoons. Besides, it also ensured safer working conditions, precluded the mobilisation of a giant set-up on either side of the river having a width of 4.8 km, and accelerated the pace of the project. A 1,000-tonne hydraulic jack and strand jacks linked with the substructures have been used for moving the steel truss over the pillars. Two sets of steel cable strands were anchored to the end cross beams of the truss and hauled by hydraulic jacks. The truss slides over the launching bearing with the help of sliding plates, which were inserted at one end and taken out at the other, thereby moving the truss towards its desired position. To limit the required launching forces, the superstructure was pulled in four launching segments of 10 spans each. Thus, the superstructure was pulled over the pillars just like a train of 10 spans, with each span weighing 1,700 mt. Finally, the launching bearings were replaced by final bearings. The tracks were laid and the road was constructed adapting RCC construction. After fulfilling the electrical and other ancillary requirements, the assignment was completed.

Next Story
Products

RR Kabel Unveils Future-Ready Wires for Safer, Sustainable Homes

RR Kabel, a leading wires and cables manufacturer, has launched three next-generation wire solutions designed to meet the demands of modern Indian homes and infrastructure amid rising temperatures and electrical loads. The new range includes Flamex HR+FR, Superex Green HR+FR, and Firex LS0H-EBXL, offering enhanced safety, performance, and sustainability. “As homes grow smarter and temperatures rise due to global warming, wires must evolve too. Our new range is built to anticipate tomorrow’s challenges—higher temperatures, heavier loads, and the need for greater safety and environmen..

Next Story
Infrastructure Urban

Gateway Distriparks to Operate Container Trains for MMLP Ankleshwar

Gateway Distriparks (GDL) has signed a 15-year agreement to be the exclusive container train operator for the 120-acre Multi Modal Logistics Park (MMLP) at Ankleshwar, Gujarat, developed by Sawariya Group of Industries. Located near Surat, the MMLP is designed to handle domestic and EXIM containers, bulk cargo, and other multimodal services. It will have an annual capacity of 200,000 TEUs and 850,000 sq ft of warehousing, with phased expansion based on demand. The facility, connected to the Western Dedicated Freight Corridor, can handle double-stack trains and will serve industrial hubs i..

Next Story
Infrastructure Urban

Bentley Systems Reveals Finalists for 2025 Going Digital Awards

Bentley Systems, Incorporated, the infrastructure engineering software company, today announced the finalists for the 2025 Going Digital Awards, recognizing outstanding achievements in advancing infrastructure through digital innovation.Selected from nearly 250 nominations submitted by organizations in 47 countries, the finalists represent 12 categories spanning the infrastructure lifecycle. Independent panels of global industry experts evaluated entries from leading engineering and construction companies and owner-operators worldwide.“We are inspired by the ways infrastructure professionals..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?