NSO Uses Model-Based Method For Uttar Pradesh Data Gaps
ECONOMY & POLICY

NSO Uses Model-Based Method For Uttar Pradesh Data Gaps

The National Statistics Office (NSO), under the Ministry of Statistics and Programme Implementation (MoSPI), has released a new study on model-based district-level estimates derived from the Household Consumption Expenditure Survey (HCES) 2022–23 for Uttar Pradesh. The report, now available on the MoSPI website, marks a step towards more localised, data-driven policymaking.

The NSO conducts large-scale household surveys across diverse socio-economic themes to generate reliable statistical inputs for policymaking. Among these, the HCES plays a vital role by capturing data on household consumption patterns, living standards, and demographic characteristics at national and state levels.

Aim of the Study

The study was undertaken following the National Statistical Commission’s Steering Committee recommendation to pilot model-based estimation techniques for generating district-level insights. A dedicated committee chaired by Dr Mausumi Bose, Former Professor at the Indian Statistical Institute (ISI), Kolkata, was constituted to explore the feasibility of estimating Monthly Per Capita Consumption Expenditure (MPCE) for each district in Uttar Pradesh using HCES data.

The project received technical support from the NSO and the Directorate of Economics and Statistics (DES), Government of Uttar Pradesh.

While HCES data provides robust estimates at national and state levels, it often lacks district-level precision due to limited survey samples. To address this gap, the study adopted a model-based approach, testing whether statistical modelling could generate accurate, cost-effective estimates for smaller administrative units.

Methodology

The research employed a statistical technique called Small Area Estimation (SAE), which enhances data accuracy for smaller regions by combining survey data with auxiliary administrative information. This approach “borrows strength” from related datasets, improving the stability of estimates where direct sampling is insufficient.

The study utilised two types of statistical models — Fay–Herriot (FH) and Spatial Fay–Herriot (SFH) — and incorporated auxiliary data such as:

Number of old-age pension beneficiaries

Number of Ayushman Bharat (PM-JAY) patients

Number of domestic LPG connections

Number of Antyodaya food scheme beneficiaries

Key Findings

The top five rural districts with the highest average MPCE were:

Bagpat

Saharanpur

Gautam Buddha Nagar

Meerut

Ghaziabad

In urban areas, the leading districts were:

Gautam Buddha Nagar

Gonda

Ghaziabad

Bagpat

Lucknow

The study showed that model-based estimation can be a cost-effective and scalable solution for generating district-level statistics using state-level survey data.

Conclusion

The findings reaffirm the potential of statistical modelling as a reliable tool for filling data gaps and improving local-level governance. By providing district-specific insights, the method enables policymakers to design targeted welfare programmes, monitor living standards, and reduce regional inequalities.

The success of this pilot in Uttar Pradesh sets a precedent for extending the model-based approach to other states and socio-economic indicators, such as employment, health, and poverty, advancing India’s commitment to data-driven policymaking and sustainable development.

The National Statistics Office (NSO), under the Ministry of Statistics and Programme Implementation (MoSPI), has released a new study on model-based district-level estimates derived from the Household Consumption Expenditure Survey (HCES) 2022–23 for Uttar Pradesh. The report, now available on the MoSPI website, marks a step towards more localised, data-driven policymaking. The NSO conducts large-scale household surveys across diverse socio-economic themes to generate reliable statistical inputs for policymaking. Among these, the HCES plays a vital role by capturing data on household consumption patterns, living standards, and demographic characteristics at national and state levels. Aim of the Study The study was undertaken following the National Statistical Commission’s Steering Committee recommendation to pilot model-based estimation techniques for generating district-level insights. A dedicated committee chaired by Dr Mausumi Bose, Former Professor at the Indian Statistical Institute (ISI), Kolkata, was constituted to explore the feasibility of estimating Monthly Per Capita Consumption Expenditure (MPCE) for each district in Uttar Pradesh using HCES data. The project received technical support from the NSO and the Directorate of Economics and Statistics (DES), Government of Uttar Pradesh. While HCES data provides robust estimates at national and state levels, it often lacks district-level precision due to limited survey samples. To address this gap, the study adopted a model-based approach, testing whether statistical modelling could generate accurate, cost-effective estimates for smaller administrative units. Methodology The research employed a statistical technique called Small Area Estimation (SAE), which enhances data accuracy for smaller regions by combining survey data with auxiliary administrative information. This approach “borrows strength” from related datasets, improving the stability of estimates where direct sampling is insufficient. The study utilised two types of statistical models — Fay–Herriot (FH) and Spatial Fay–Herriot (SFH) — and incorporated auxiliary data such as: Number of old-age pension beneficiaries Number of Ayushman Bharat (PM-JAY) patients Number of domestic LPG connections Number of Antyodaya food scheme beneficiaries Key Findings The top five rural districts with the highest average MPCE were: Bagpat Saharanpur Gautam Buddha Nagar Meerut Ghaziabad In urban areas, the leading districts were: Gautam Buddha Nagar Gonda Ghaziabad Bagpat Lucknow The study showed that model-based estimation can be a cost-effective and scalable solution for generating district-level statistics using state-level survey data. Conclusion The findings reaffirm the potential of statistical modelling as a reliable tool for filling data gaps and improving local-level governance. By providing district-specific insights, the method enables policymakers to design targeted welfare programmes, monitor living standards, and reduce regional inequalities. The success of this pilot in Uttar Pradesh sets a precedent for extending the model-based approach to other states and socio-economic indicators, such as employment, health, and poverty, advancing India’s commitment to data-driven policymaking and sustainable development.

Next Story
Infrastructure Energy

Delhi HC Stays PGCIL Order against KEC International

KEC International has informed stock exchanges of a significant legal development concerning its eligibility to participate in tenders floated by Power Grid Corporation of India (PGCIL), in a disclosure made under Regulation 30 of the SEBI (Listing Obligations and Disclosure Requirements) Regulations.The update follows the company’s earlier intimation dated November 18, 2025, regarding an order issued by PGCIL that excluded KEC International from participating in its tenders for a period of nine months. Challenging the said order, the company filed a writ petition before the Hon’ble High C..

Next Story
Building Material

LANXESS Advances Pigment Solutions for New-Age Concrete Technologies

LANXESS is deepening its engagement with next-generation concrete technologies by advancing research into the performance of iron oxide pigments across emerging construction applications, including self-compacting concrete (SCC), geopolymers and 3D-printed concrete. Through extensive investigations and long-term weathering tests, iron oxide pigments have proven their suitability for a wide range of concrete construction materials, though their use in new formulations requires a thorough understanding of construction chemistry and material interactions.According to Oliver Fleschentraeger, Techn..

Next Story
Infrastructure Urban

JHS Svendgaard to Invest Rs 250 Million in Kala Amb Expansion

JHS Svendgaard Laboratories (JHS), a leading Indian manufacturer of oral care products, has announced an investment of Rs 250 million to expand its manufacturing footprint in Kala Amb, Himachal Pradesh. The investment is aimed at strengthening production capacity, introducing advanced technologies and supporting the company’s next phase of growth in response to rising domestic and global demand.As part of the expansion plan, JHS will construct a new 100,000 sq ft manufacturing facility on its existing five-acre land parcel at Kala Amb. The project is expected to be executed over a two-year p..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Open In App