+
Materials trending for bridge construction
ROADS & HIGHWAYS

Materials trending for bridge construction

The materials used in bridge construction have a direct correlation to the span configuration for superstructure and height and exposure conditions for substructure.


Shashikant Limaye, Member Expert Committee, Pune Metro Project, says, “High-performance concrete with grade of M40 and above is now commonly used in the substructure for durability. In pre-stressed concrete superstructures, HPC with M55 grade is common. For reinforcing steel, corrosion-resistant steel (CRS) is gradually being introduced. For spans beyond 50 m, steel is a preferred material for the superstructure.”


According to SV Desai, Executive Vice-President & Head - Heavy Civil Infrastructure IC, L&T Construction, an emerging trend is to use sustainable and environment-friendly materials for concrete production. “Post-concrete protection of the structure, reducing permeability of concrete and use of special finishing materials are recent norms,” he says. “Grounded granulated blast furnace slag (GGBS) and ultrafine fly-ash are used while designing the concrete mix.” These strengthen the structure while reducing the carbon footprint in concrete production. He adds that to protect these structures, special anti-carbonation coatings and corrosion inhibitors are used to improve strength, quality, durability and service life of a bridge, thereby reducing maintenance cost.


“Steel bridges are effective,” says RVR Kishore, Project Director, Hindustan Construction Company. “The Bogibeel bridge required 80,000 tonne of steel and we have used 410 grade steel with copper bearing, which adds to the durability of steel. Similarly, in concrete, today we can go up to M60 grade. Also, given a choice, we would opt for OPC cement or add fly-ash or GGBS, but these are not easily available across the country. For Bogibeel Bridge, we used pure cement as there were no options of using other materials at the location.”


Citing the use of “concrete, steel, fibre-reinforced polymers, stainless steel or a combinations of those materials,” Vivek Gautam, COO - Strategic Business Group – Core Infra, Tata Projects, says, “Reinforced or pre-stressed concrete is used for construction. Reinforcement in RCC provides ductility. Ductility reinforcement is provided mainly in earthquake-resistant construction. Composite materials are used for new bridges and rehabilitation purposes. Fibre-reinforced plastic is one such material; it is a polymer matrix reinforced with fibres, either glass or carbon. These materials are lightweight, durable, high strength and ductile in nature. New solutions to counter deterioration include reactive powder concrete (RPC), a form of high-performance concrete reinforced with steel fibres. This mix will help make slender columns for bridges of a longer span. Composite materials are used in the repair of bridge columns and any other supporting elements to improve ductility and seismic resistance. Epoxy-impregnated fiberglass is used to cover columns that are non-ductile in nature. This is an alternative to the steel jacket technique.”


SHRIYAL SETHUMADHAVAN



The materials used in bridge construction have a direct correlation to the span configuration for superstructure and height and exposure conditions for substructure.Shashikant Limaye, Member Expert Committee, Pune Metro Project, says, “High-performance concrete with grade of M40 and above is now commonly used in the substructure for durability. In pre-stressed concrete superstructures, HPC with M55 grade is common. For reinforcing steel, corrosion-resistant steel (CRS) is gradually being introduced. For spans beyond 50 m, steel is a preferred material for the superstructure.”According to SV Desai, Executive Vice-President & Head - Heavy Civil Infrastructure IC, L&T Construction, an emerging trend is to use sustainable and environment-friendly materials for concrete production. “Post-concrete protection of the structure, reducing permeability of concrete and use of special finishing materials are recent norms,” he says. “Grounded granulated blast furnace slag (GGBS) and ultrafine fly-ash are used while designing the concrete mix.” These strengthen the structure while reducing the carbon footprint in concrete production. He adds that to protect these structures, special anti-carbonation coatings and corrosion inhibitors are used to improve strength, quality, durability and service life of a bridge, thereby reducing maintenance cost.“Steel bridges are effective,” says RVR Kishore, Project Director, Hindustan Construction Company. “The Bogibeel bridge required 80,000 tonne of steel and we have used 410 grade steel with copper bearing, which adds to the durability of steel. Similarly, in concrete, today we can go up to M60 grade. Also, given a choice, we would opt for OPC cement or add fly-ash or GGBS, but these are not easily available across the country. For Bogibeel Bridge, we used pure cement as there were no options of using other materials at the location.”Citing the use of “concrete, steel, fibre-reinforced polymers, stainless steel or a combinations of those materials,” Vivek Gautam, COO - Strategic Business Group – Core Infra, Tata Projects, says, “Reinforced or pre-stressed concrete is used for construction. Reinforcement in RCC provides ductility. Ductility reinforcement is provided mainly in earthquake-resistant construction. Composite materials are used for new bridges and rehabilitation purposes. Fibre-reinforced plastic is one such material; it is a polymer matrix reinforced with fibres, either glass or carbon. These materials are lightweight, durable, high strength and ductile in nature. New solutions to counter deterioration include reactive powder concrete (RPC), a form of high-performance concrete reinforced with steel fibres. This mix will help make slender columns for bridges of a longer span. Composite materials are used in the repair of bridge columns and any other supporting elements to improve ductility and seismic resistance. Epoxy-impregnated fiberglass is used to cover columns that are non-ductile in nature. This is an alternative to the steel jacket technique.”SHRIYAL SETHUMADHAVAN

Next Story
Infrastructure Energy

Tata Power, Suzlon Ink Rs 60 Billion Wind Energy Deal in Andhra

Tata Power has signed an agreement with Suzlon Energy to develop, construct, and supply 700 megawatt (MW) wind turbines in Andhra Pradesh. The Rs 60 billion project forms part of a 7 gigawatt (GW) renewable energy plan announced by Tata Power Renewable Energy (TPREL) and the state government in March 2025.This marks the first wind energy project in the state since 2019. The larger 7 GW programme, covering solar, wind, and hybrid projects with or without storage, is expected to attract investments of around Rs 490 billion, making it one of the state’s largest clean energy commitments.The turb..

Next Story
Infrastructure Transport

Odisha Approves Rs 12.6 Billion For 32 New Bridges

Odisha is set for a major infrastructure boost with the approval of 32 new bridges under the Setu Bandhan Yojana for FY 2025–26. The project, valued at Rs 12.6 billion, is aimed at improving road connectivity across ten districts, enhancing mobility and driving local development.The bridges will be constructed in Bolangir, Subarnapur, Nayagarh, Sambalpur, Malkangiri, Bargarh, Koraput, Jagatsinghpur, Cuttack, and Puri. Many of these areas are rural or located in difficult terrains, where improved accessibility will greatly benefit the transportation of goods and public mobility.Setu Bandhan Y..

Next Story
Infrastructure Transport

UP Plans Rs 350 Billion Gorakhpur–Shamli Expressway

Uttar Pradesh is preparing to build its largest expressway, a 700-km six-lane project that will surpass the 570-km Ganga Expressway from Meerut to Prayagraj. Designed as a greenfield project, the Gorakhpur–Shamli Expressway will cut travel time between eastern and western Uttar Pradesh to just six hours, transforming regional connectivity.The expressway will pass through 22 districts and 37 tehsils, bringing faster travel and significant economic benefits, including higher land values for farmers and employment opportunities during and after construction. A drone survey to map the route is e..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?