Beijing University developed anode materials for sodium-ion battery
POWER & RENEWABLE ENERGY

Beijing University developed anode materials for sodium-ion battery

Researchers at Beijing University of Technology told the media that they had synthesised phosphorus and tin-based composites for high-capacity and high-stability anode material for sodium-ion batteries, having capacity retention of 97.7% after 50 cycles.

According to the researchers, sodium-ion batteries would replace lithium-ion batteries due to their high abundance and low-cost sodium. Phosphorus is a high-capacity anode material with high theoretical capacities, low discharge voltages, and low costs. However, they suffer from large volume expansion, including problems like structural collapse, particle pulverisation and declining performance rapidly. Phosphorus alloyed with tin is used to reduce such issues.

Researchers used an optimal structure comprising crystalline nanodomains like tin phosphide and tin in an amorphous phosphorus matrix. It has helped in improving the conductivity of amorphous phosphorus and enhancing the efficiency of electrochemical reactions. Phosphorus, with its small crystalline domain and amorphous nature, makes it highly stable.

Researchers faced issues in getting the structure information of microstructures due to disordered composite anode materials. They used a new methodology to get local structure information for compiled systems and quantify the components to even out the disordered materials. It helped to analyse the structure and proportion of the crystalline domains.

Last year, in August, the Sandia National Laboratories designed new molten sodium batteries for grid-scale energy storage capacity. It could operate in temperatures as low as 230 degrees Fahrenheit against the commercially available molten sodium batteries, which can operate between 520-660 degrees Fahrenheit.

Previously, the Washington State University and Pacific Northwest National Laboratory told the media that they had made sodium-ion batteries using cheap and widely available materials. These batteries work similarly to lithium-ion batteries and could retain 80% of their charge even after 1,000 cycles.

Image Source

Researchers at Beijing University of Technology told the media that they had synthesised phosphorus and tin-based composites for high-capacity and high-stability anode material for sodium-ion batteries, having capacity retention of 97.7% after 50 cycles. According to the researchers, sodium-ion batteries would replace lithium-ion batteries due to their high abundance and low-cost sodium. Phosphorus is a high-capacity anode material with high theoretical capacities, low discharge voltages, and low costs. However, they suffer from large volume expansion, including problems like structural collapse, particle pulverisation and declining performance rapidly. Phosphorus alloyed with tin is used to reduce such issues. Researchers used an optimal structure comprising crystalline nanodomains like tin phosphide and tin in an amorphous phosphorus matrix. It has helped in improving the conductivity of amorphous phosphorus and enhancing the efficiency of electrochemical reactions. Phosphorus, with its small crystalline domain and amorphous nature, makes it highly stable. Researchers faced issues in getting the structure information of microstructures due to disordered composite anode materials. They used a new methodology to get local structure information for compiled systems and quantify the components to even out the disordered materials. It helped to analyse the structure and proportion of the crystalline domains. Last year, in August, the Sandia National Laboratories designed new molten sodium batteries for grid-scale energy storage capacity. It could operate in temperatures as low as 230 degrees Fahrenheit against the commercially available molten sodium batteries, which can operate between 520-660 degrees Fahrenheit. Previously, the Washington State University and Pacific Northwest National Laboratory told the media that they had made sodium-ion batteries using cheap and widely available materials. These batteries work similarly to lithium-ion batteries and could retain 80% of their charge even after 1,000 cycles. Image Source

Next Story
Resources

Ajmera Realty launches tree drive on Environment Day

Ajmera Realty & Infra India marked World Environment Day with a large-scale tree plantation initiative—Plant-with-Purpose—across its projects in Mumbai and Bangalore. The drive was inaugurated at Ajmera Manhattan and Ajmera Greenfinity in Wadala, with senior company officials and residents in attendance. The campaign encourages residents to embrace eco-conscious, self-reliant lifestyles by growing useful plants and trees within their communities. Horticulture expert Devendra Bhekar guided residents on creating and maintaining green spaces. Ajmera Realty planted over 500 trees..

Next Story
Resources

Twaron®-reinforced tyre powers Brunel’s solar race car

Teijin Aramid’s Twaron® with circular content will debut in Bridgestone’s race tyres for the 2025 Bridgestone World Solar Challenge, supporting the Brunel Solar Team’s Nuna 13 car. This marks the first use of the recycled-content aramid in a high-performance race tyre. The Twaron®-reinforced belts help enhance durability, reduce rolling resistance, and maintain lightweight strength—critical for the 3,000-km solar race across Australia. Bridgestone combines this with ENLITENTM tech and other recycled inputs to maximise environmental and performance outcomes. Teijin Aramid, a..

Next Story
Building Material

Kamdhenu Paints launches new wood coating range

Kamdhenu Paints has launched a comprehensive premium wood coating range designed for both interior and exterior applications. The collection includes high-performance solutions like Kamwood 2K PU for a rich matt or high-gloss finish, Kamwood 1K PU for clarity and stain protection, and the Kamwood Melamyne system for a smooth, durable finish. Also featured are Kamwood Wood Stains, which enhance wood grains with vibrant colour, and NC Sanding Sealer for high-build grain filling. The range is supported by Kamwood Thinners for ease of application and optimal finish. Saurabh Agarwal, MD, ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?