+
CLRI Scientists Develop Smart Nanozyme for Safe Energy Production
POWER & RENEWABLE ENERGY

CLRI Scientists Develop Smart Nanozyme for Safe Energy Production

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production.

While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production.

To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells.

Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process.

These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies.

The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production. While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production. To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells. Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process. These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies. The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Next Story
Real Estate

DLF Returns to Mumbai with Premium Andheri Residential Project

Delhi-NCR based real estate major DLF announced its return to the Mumbai market on 17 July with the launch of its premium residential project, The WestPark, in Andheri. The first phase includes 416 apartments spread across four towers, with two towers launched on the announcement day. The company plans to invest over Rs 8 billion in the project and expects a topline exceeding Rs 20 billion from Phase 1.“We have launched two towers and, given the strong response, plan to unveil the remaining two towers ahead of schedule, within the next few days,” said Aakash Ohri, Joint Managing Director o..

Next Story
Infrastructure Urban

APCRDA Advances Net Zero Goal with IGBC Training for Officials

In a significant stride towards Andhra Pradesh’s Net Zero target by 2040 and the Swarna Andhra 2047 vision, the Andhra Pradesh Capital Region Development Authority (APCRDA), in partnership with the Indian Green Building Council (IGBC), conducted a high-level capacity-building programme for senior officials in Vijayawada on Friday.Held at a city hotel, the session saw the participation of over 50 senior APCRDA officials, including the Engineer-in-Chief, Chief Engineer (H&B), Director (Planning), Director (Environment), and heads of key departments. The training centred on IGBC’s Green B..

Next Story
Infrastructure Energy

Assam Solar Project Halted as Waaree EPC Contract Is Cancelled

Following the Assam government’s withdrawal from its proposed solar project, the Engineering, Procurement, and Construction (EPC) contract awarded to Waaree Renewable has been suspended. Waaree Group’s EPC division informed the stock exchange of this development through a regulatory filing.The Assam solar project was suspended due to funding challenges, which rendered the initiative unviable for the state government. Waaree Renewable Transmission Limited (RTL) explained that the Government of Assam has withdrawn the project’s funding via the Asian Development Bank (ADB) loan. Consequentl..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?