CLRI Scientists Develop Smart Nanozyme for Safe Energy Production
POWER & RENEWABLE ENERGY

CLRI Scientists Develop Smart Nanozyme for Safe Energy Production

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production.

While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production.

To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells.

Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process.

These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies.

The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production. While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production. To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells. Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process. These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies. The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Next Story
Resources

Ajmera Realty launches tree drive on Environment Day

Ajmera Realty & Infra India marked World Environment Day with a large-scale tree plantation initiative—Plant-with-Purpose—across its projects in Mumbai and Bangalore. The drive was inaugurated at Ajmera Manhattan and Ajmera Greenfinity in Wadala, with senior company officials and residents in attendance. The campaign encourages residents to embrace eco-conscious, self-reliant lifestyles by growing useful plants and trees within their communities. Horticulture expert Devendra Bhekar guided residents on creating and maintaining green spaces. Ajmera Realty planted over 500 trees..

Next Story
Resources

Twaron®-reinforced tyre powers Brunel’s solar race car

Teijin Aramid’s Twaron® with circular content will debut in Bridgestone’s race tyres for the 2025 Bridgestone World Solar Challenge, supporting the Brunel Solar Team’s Nuna 13 car. This marks the first use of the recycled-content aramid in a high-performance race tyre. The Twaron®-reinforced belts help enhance durability, reduce rolling resistance, and maintain lightweight strength—critical for the 3,000-km solar race across Australia. Bridgestone combines this with ENLITENTM tech and other recycled inputs to maximise environmental and performance outcomes. Teijin Aramid, a..

Next Story
Building Material

Kamdhenu Paints launches new wood coating range

Kamdhenu Paints has launched a comprehensive premium wood coating range designed for both interior and exterior applications. The collection includes high-performance solutions like Kamwood 2K PU for a rich matt or high-gloss finish, Kamwood 1K PU for clarity and stain protection, and the Kamwood Melamyne system for a smooth, durable finish. Also featured are Kamwood Wood Stains, which enhance wood grains with vibrant colour, and NC Sanding Sealer for high-build grain filling. The range is supported by Kamwood Thinners for ease of application and optimal finish. Saurabh Agarwal, MD, ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?