CLRI Scientists Develop Smart Nanozyme for Safe Energy Production
POWER & RENEWABLE ENERGY

CLRI Scientists Develop Smart Nanozyme for Safe Energy Production

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production.

While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production.

To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells.

Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process.

These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies.

The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production. While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production. To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells. Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process. These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies. The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Next Story
Infrastructure Transport

Mumbai-Ahmedabad Bullet Train Set to Launch by 2028

India’s first bullet train is set to revolutionize high-speed travel along the western corridor, with the Mumbai-Ahmedabad high-speed rail project aiming for a 2028 launch. This announcement marks a major milestone in India’s infrastructure goals, as it promises to reduce travel time between the two economic hubs from eight hours to just three.Spanning a planned 508-kilometre stretch, the corridor stands as a flagship example of Indo-Japanese collaboration in technology and engineering. Once operational, the train is expected to transform intercity mobility and place India among the select..

Next Story
Infrastructure Transport

Mumbai-Gandhinagar Train Service Enhances Passenger Capacity

The Mumbai Central–Gandhinagar Capital Vande Bharat Express has increased its passenger capacity by adding four additional AC chair car coaches to meet the growing commuter demand on one of India’s busiest business corridors. This upgrade, effective from 11 May, raised the train’s seating capacity from 1,128 to 1,440 passengers, allowing it to serve 936 more passengers daily in both directions. The increase was described as a practical measure to accommodate the surging demand on the busy Mumbai–Ahmedabad–Gandhinagar route, which regularly operates at over 150 percent seat occupancy...

Next Story
Infrastructure Urban

Delhi Plans 12 Sewage Plants to Clean Najafgarh Drain Efficiently

Delhi’s ambitious plan to improve the water quality of the Yamuna River has gained significant momentum as the Delhi Jal Board (DJB) has begun work on 12 new sewage treatment plants (STPs) aimed at reducing the volume of untreated sewage being discharged from the Najafgarh Drain.This initiative forms part of the ongoing efforts to clean the Yamuna and restore the river’s health, which has long been a critical environmental issue for the national capital. Given the alarming pollution levels in the Yamuna, experts and officials consider this project a vital step toward addressing the persist..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?