CLRI Scientists Develop Smart Nanozyme for Safe Energy Production
POWER & RENEWABLE ENERGY

CLRI Scientists Develop Smart Nanozyme for Safe Energy Production

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production.

While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production.

To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells.

Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process.

These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies.

The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Scientists at CSIR-Central Leather Research Institute (CLRI), Chennai, have created a new artificial enzyme that could significantly improve how energy is managed within cells. The enzyme, called Cu-Phen, is a metallo-nanozyme designed to mimic natural enzymes by regulating electron transfer—a key process in cellular energy production. While nanozymes have been gaining interest for their potential in medicine, energy, and environmental solutions, many current versions face a major drawback: their lack of control over electron flow. This can result in the production of toxic byproducts like reactive oxygen species (ROS), which may lead to cellular damage and reduced ATP (energy) production. To address this, Dr. Amit Vernekar and his Ph.D. student, Adarsh Fatrekar, developed Cu-Phen using a “catalyst-by-design” approach. The nanozyme is made by coordinating copper ions (Cu²?) with phenylalanine, an amino acid, creating a structured assembly with a clearly defined active site. This structure helps ensure precise electron flow, similar to how natural enzymes work inside cells. Cu-Phen interacts specifically with cytochrome c, a protein central to the electron transport chain in cells. The nanozyme binds in a receptor-ligand fashion and uses a unique mechanism called proton-coupled electron transfer to efficiently reduce oxygen into water—avoiding the creation of harmful ROS in the process. These findings, recently published in the Journal of Materials Chemistry A, highlight the importance of active site design in the development of next-generation nanozymes. With better control over electron transfer, these artificial enzymes could play a key role in sustainable energy, medical innovations, and bio-compatible technologies. The study opens new doors for nanozyme research, showing how carefully engineered catalysts can seamlessly integrate into biological systems and safely enhance energy pathways.

Next Story
Technology

Titan Intech Strengthens UltraLED Push With Global LED Veteran

Titan Intech has announced the induction of global LED industry veteran Su Piow Ko to its Board of Directors, marking a strategic step in strengthening its UltraLED Displays roadmap and building globally competitive LED display solutions from India.The appointment aligns with Titan Intech’s ambition to position India as a hub for advanced, high-quality LED display manufacturing. With an increased focus on UltraLED Displays, the company aims to enhance technical governance, raise manufacturing standards and expand its presence across global markets.Su Piow Ko brings over three decades of inte..

Next Story
Infrastructure Urban

Dun & Bradstreet Flags New Growth Engines in India 2026 Outlook

Dun & Bradstreet has released its India 2026: D&B’s Perspective report, projecting a stable macroeconomic environment underpinned by fresh opportunities for productivity-led and inclusive growth. The report outlines how India’s next growth phase will be driven by digitised logistics, trusted data ecosystems, clean energy and rising city vitality.According to the outlook, India’s GDP growth is expected to reach around 6.6 per cent by FY2027, supported by resilient consumer demand and sustained public investment. Manufacturing is seen entering a new phase, moving beyond scale towar..

Next Story
Building Material

Sources Unlimited Introduces Vitamine Pendant Lamp by Melogranoblu

Sources Unlimited has launched the Vitamine Pendant Lamp by Melogranoblu in India, expanding its portfolio of curated international luxury lighting solutions. Designed and crafted in Italy, the Vitamine pendant reflects contemporary glass artistry, combining hand-blown craftsmanship with refined aesthetics and atmospheric illumination.The Vitamine Pendant Lamp is sculpted in hand-blown glass and is available in frosted, silver and black metallised finishes. Each finish offers a distinct visual identity while maintaining a cohesive and sophisticated design language. The lamp’s softly contoure..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Open In App