+
The substantial sustainability benefits of smart meters
POWER & RENEWABLE ENERGY

The substantial sustainability benefits of smart meters

The electrical grid is a marvel of modern engineering that underpins nearly every aspect of society – a complex interconnection that spans the tiniest LED lightbulb and the largest power plants.

But as electricity use grows, which it does exponentially, the grid strains. The use of renewable energy sources and new regulations can add to the complexity and strain.

Without the implementation of new technologies and models, we’ll be stuck with an unreliable power system where technical, as well as non-technical parameters, will be neglected. It can lead to significant chaos, harming the interests of various stakeholders. That type of neglect could make commonplace incidents like a 2012 blackout in India that left 230 million without power.

Smart grids are, undoubtedly, the definitive solution for managing electricity distribution in a world dependent on renewable energy.

But what makes them smarter? And why do we need them?

At a core level, the challenges of the grid come down to a simple fact. It needs to produce exactly as much electricity as is demanded. If demand exceeds supply, brown- or black-outs are possible. When supply exceeds demand, power plants may be forced offline to help stabilise frequency and voltage.

Demand fluctuates all the time, from day to night, and from hour to hour. Those demand shifts can be largely predicted based on historical data. Power plants may go on and offline in response to demand. But renewable energy sources change the calculus. They produce power based on factors like weather, which may not match demand.

That’s where smart grids come in. As the smart grid is a two-way system, it will act as a safeguard, automatically rerouting power in case of equipment failure and power outages. They integrate information technologies with renewable energy sources, creating a two-way conversation between suppliers and consumers. This conversation is enabled with smart metering devices, which accurately monitor power consumption at a granular level.

Smart grids enable the efficient transmission of electricity, better restoration of electricity after fluctuations, lower peak demand and power costs for consumers, provide better integration of renewable energy systems with the power grid, improved security and much more.

Smart architecture for a complex world

Smart metering offers substantial benefits like reduced commercial losses, effective monitoring of energy (real-time or near real-time), energy theft detection, enhancements in grid reliability and better revenue management. Furthermore, it enables customers to keep track of their energy consumption, allowing them to adjust their usage as required.

Presently, researchers are more focused on the deployment of more complicated information, communication technologies and control in a multi-layered architecture. The two-way communication between a smart meter and the grid may allow an automated building, for example, to detect when consumption is high. It could, for example, turn off power to uninhabited parts of the building in response, or adjust heating and cooling settings in response.

But that two-way communication adds another layer of complexity, because demand may shift again because of reactions from smart meters, just as the grid brings more power sources online.

Power generated by renewable sources and corresponding action taken by business layers is not predictable. So it’s imperative that the latest controls are leveraged in the service of smart grids. As the smart grid evolves, it will undoubtedly transform grid operations in the same way the internet did.

The smart grid shows an unmatched scope to move the electrical energy industry into a new milestone of reliability and efficiency that will enhance our environment’s health. Undeniably, this transition period is crucial. The adoption of sophisticated testing and control technologies, raising consumer awareness and implementing regulations and standards for the same would require robust engineering and management protocols.

The electrical grid is a marvel of modern engineering that underpins nearly every aspect of society – a complex interconnection that spans the tiniest LED lightbulb and the largest power plants. But as electricity use grows, which it does exponentially, the grid strains. The use of renewable energy sources and new regulations can add to the complexity and strain. Without the implementation of new technologies and models, we’ll be stuck with an unreliable power system where technical, as well as non-technical parameters, will be neglected. It can lead to significant chaos, harming the interests of various stakeholders. That type of neglect could make commonplace incidents like a 2012 blackout in India that left 230 million without power. Smart grids are, undoubtedly, the definitive solution for managing electricity distribution in a world dependent on renewable energy. But what makes them smarter? And why do we need them? At a core level, the challenges of the grid come down to a simple fact. It needs to produce exactly as much electricity as is demanded. If demand exceeds supply, brown- or black-outs are possible. When supply exceeds demand, power plants may be forced offline to help stabilise frequency and voltage. Demand fluctuates all the time, from day to night, and from hour to hour. Those demand shifts can be largely predicted based on historical data. Power plants may go on and offline in response to demand. But renewable energy sources change the calculus. They produce power based on factors like weather, which may not match demand. That’s where smart grids come in. As the smart grid is a two-way system, it will act as a safeguard, automatically rerouting power in case of equipment failure and power outages. They integrate information technologies with renewable energy sources, creating a two-way conversation between suppliers and consumers. This conversation is enabled with smart metering devices, which accurately monitor power consumption at a granular level. Smart grids enable the efficient transmission of electricity, better restoration of electricity after fluctuations, lower peak demand and power costs for consumers, provide better integration of renewable energy systems with the power grid, improved security and much more. Smart architecture for a complex world Smart metering offers substantial benefits like reduced commercial losses, effective monitoring of energy (real-time or near real-time), energy theft detection, enhancements in grid reliability and better revenue management. Furthermore, it enables customers to keep track of their energy consumption, allowing them to adjust their usage as required. Presently, researchers are more focused on the deployment of more complicated information, communication technologies and control in a multi-layered architecture. The two-way communication between a smart meter and the grid may allow an automated building, for example, to detect when consumption is high. It could, for example, turn off power to uninhabited parts of the building in response, or adjust heating and cooling settings in response. But that two-way communication adds another layer of complexity, because demand may shift again because of reactions from smart meters, just as the grid brings more power sources online. Power generated by renewable sources and corresponding action taken by business layers is not predictable. So it’s imperative that the latest controls are leveraged in the service of smart grids. As the smart grid evolves, it will undoubtedly transform grid operations in the same way the internet did. The smart grid shows an unmatched scope to move the electrical energy industry into a new milestone of reliability and efficiency that will enhance our environment’s health. Undeniably, this transition period is crucial. The adoption of sophisticated testing and control technologies, raising consumer awareness and implementing regulations and standards for the same would require robust engineering and management protocols.

Next Story
Real Estate

DLF Returns to Mumbai with Premium Andheri Residential Project

Delhi-NCR based real estate major DLF announced its return to the Mumbai market on 17 July with the launch of its premium residential project, The WestPark, in Andheri. The first phase includes 416 apartments spread across four towers, with two towers launched on the announcement day. The company plans to invest over Rs 8 billion in the project and expects a topline exceeding Rs 20 billion from Phase 1.“We have launched two towers and, given the strong response, plan to unveil the remaining two towers ahead of schedule, within the next few days,” said Aakash Ohri, Joint Managing Director o..

Next Story
Infrastructure Urban

APCRDA Advances Net Zero Goal with IGBC Training for Officials

In a significant stride towards Andhra Pradesh’s Net Zero target by 2040 and the Swarna Andhra 2047 vision, the Andhra Pradesh Capital Region Development Authority (APCRDA), in partnership with the Indian Green Building Council (IGBC), conducted a high-level capacity-building programme for senior officials in Vijayawada on Friday.Held at a city hotel, the session saw the participation of over 50 senior APCRDA officials, including the Engineer-in-Chief, Chief Engineer (H&B), Director (Planning), Director (Environment), and heads of key departments. The training centred on IGBC’s Green B..

Next Story
Infrastructure Energy

Assam Solar Project Halted as Waaree EPC Contract Is Cancelled

Following the Assam government’s withdrawal from its proposed solar project, the Engineering, Procurement, and Construction (EPC) contract awarded to Waaree Renewable has been suspended. Waaree Group’s EPC division informed the stock exchange of this development through a regulatory filing.The Assam solar project was suspended due to funding challenges, which rendered the initiative unviable for the state government. Waaree Renewable Transmission Limited (RTL) explained that the Government of Assam has withdrawn the project’s funding via the Asian Development Bank (ADB) loan. Consequentl..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?