Groundbreaking: Recipe for zero-carbon cement discovered
Concrete

Groundbreaking: Recipe for zero-carbon cement discovered

A breakthrough from Cambridge aimed at tackling CO2 emissions from concrete and steel production simultaneously. It suggests that throwing old concrete into steel-processing furnaces could yield both purified iron and "reactivated cement" as a byproduct, potentially leading to carbon-zero cement production if renewable energy is used.

Concrete production is a significant contributor to global CO2 emissions, accounting for approximately 8% of the total. However, recycling concrete into a usable form for new structures has been challenging.

Efforts to make concrete more environmentally friendly have included altering its composition to reduce pollution, such as substituting less harmful ingredients like limestone, or designing concrete to absorb more CO2 from the atmosphere over time. In this study, researchers from Cambridge explored the conversion of waste concrete back into clinker, the dry component of cement, for reuse.

Dr Cyrille Dunant, the lead author of the study, mentioned having a notion from previous research that crushing old concrete, removing sand and stones, heating the cement to eliminate water, and then forming clinker might be feasible. They experimented with using an electric arc furnace, commonly employed for recycling steel, to aid this process.

In traditional steel recycling using an electric arc furnace, a flux material, typically lime, is utilised to purify the steel. This substance captures impurities, rises to the surface, and forms a protective layer to prevent exposure to air. Afterward, the used flux is discarded as waste.

In the Cambridge method, the lime flux was replaced with recycled cement paste. Remarkably, not only was the steel successfully purified, but the leftover slag could be rapidly cooled to produce new Portland cement. The resulting concrete exhibited similar performance to conventional concrete.

Your next big infra connection is waiting at RAHSTA 2025 – Asia’s Biggest Roads & Highways Expo, Jio World Convention Centre, Mumbai. Don’t miss out!

A breakthrough from Cambridge aimed at tackling CO2 emissions from concrete and steel production simultaneously. It suggests that throwing old concrete into steel-processing furnaces could yield both purified iron and reactivated cement as a byproduct, potentially leading to carbon-zero cement production if renewable energy is used. Concrete production is a significant contributor to global CO2 emissions, accounting for approximately 8% of the total. However, recycling concrete into a usable form for new structures has been challenging. Efforts to make concrete more environmentally friendly have included altering its composition to reduce pollution, such as substituting less harmful ingredients like limestone, or designing concrete to absorb more CO2 from the atmosphere over time. In this study, researchers from Cambridge explored the conversion of waste concrete back into clinker, the dry component of cement, for reuse. Dr Cyrille Dunant, the lead author of the study, mentioned having a notion from previous research that crushing old concrete, removing sand and stones, heating the cement to eliminate water, and then forming clinker might be feasible. They experimented with using an electric arc furnace, commonly employed for recycling steel, to aid this process. In traditional steel recycling using an electric arc furnace, a flux material, typically lime, is utilised to purify the steel. This substance captures impurities, rises to the surface, and forms a protective layer to prevent exposure to air. Afterward, the used flux is discarded as waste. In the Cambridge method, the lime flux was replaced with recycled cement paste. Remarkably, not only was the steel successfully purified, but the leftover slag could be rapidly cooled to produce new Portland cement. The resulting concrete exhibited similar performance to conventional concrete.

Next Story
Real Estate

Vitizen Hotels Signs Deal at Manyata Tech Park

Vikram Kamats Hospitality, as part of its ongoing expansion in key metropolitan markets, announced that its material subsidiary, Vitizen Hotels, has signed a long-term lease agreement for a 45-key hotel property at Manyata Tech Park, Bengaluru.Strategically located in the city’s prominent IT hub, the property is well-positioned to serve corporate travelers, business professionals, and long-stay guests. The addition aligns with the company’s asset-light growth model, leveraging long-term leases to expand its footprint in high-demand urban markets.The hotel is expected to strengthen the comp..

Next Story
Infrastructure Transport

CONCOR Signs MoU with BPIPL to Operate Container Terminal at Bhavnagar Port

Container Corporation of India (CONCOR) has signed a Memorandum of Understanding (MoU) with Bhavnagar Port Infrastructure (BPIPL) on September 4, 2025, in New Delhi to operate and maintain the upcoming container terminal at the northside of Bhavnagar Port, Gujarat.BPIPL had earlier entered into an agreement with the Gujarat Maritime Board (GMB) in September 2024 for the port’s development. Under this arrangement, 235 hectares of land has been leased to BPIPL for 30 years, with provision for expansion by an additional 250 hectares.The new terminal is expected to significantly enhance logistic..

Next Story
Infrastructure Transport

Concord Launches India’s First Indigenous Zero-Emission Rail Propulsion

Concord Control Systems (CCSL), a leader in embedded electronics and critical rail technologies, has announced the development of India’s first fully indigenous zero-emission propulsion system, marking a significant step toward the country’s railway electrification and net-zero goals for 2030.Powered by Lithium Iron Phosphate (LFP) batteries and featuring a DC chopper-based drive, the propulsion system eliminates idling losses common in diesel engines, offering higher efficiency, lower costs, and zero emissions.What sets this innovation apart is its completely indigenous design. Except for..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?