Groundbreaking: Recipe for zero-carbon cement discovered
Concrete

Groundbreaking: Recipe for zero-carbon cement discovered

A breakthrough from Cambridge aimed at tackling CO2 emissions from concrete and steel production simultaneously. It suggests that throwing old concrete into steel-processing furnaces could yield both purified iron and "reactivated cement" as a byproduct, potentially leading to carbon-zero cement production if renewable energy is used.

Concrete production is a significant contributor to global CO2 emissions, accounting for approximately 8% of the total. However, recycling concrete into a usable form for new structures has been challenging.

Efforts to make concrete more environmentally friendly have included altering its composition to reduce pollution, such as substituting less harmful ingredients like limestone, or designing concrete to absorb more CO2 from the atmosphere over time. In this study, researchers from Cambridge explored the conversion of waste concrete back into clinker, the dry component of cement, for reuse.

Dr Cyrille Dunant, the lead author of the study, mentioned having a notion from previous research that crushing old concrete, removing sand and stones, heating the cement to eliminate water, and then forming clinker might be feasible. They experimented with using an electric arc furnace, commonly employed for recycling steel, to aid this process.

In traditional steel recycling using an electric arc furnace, a flux material, typically lime, is utilised to purify the steel. This substance captures impurities, rises to the surface, and forms a protective layer to prevent exposure to air. Afterward, the used flux is discarded as waste.

In the Cambridge method, the lime flux was replaced with recycled cement paste. Remarkably, not only was the steel successfully purified, but the leftover slag could be rapidly cooled to produce new Portland cement. The resulting concrete exhibited similar performance to conventional concrete.

A breakthrough from Cambridge aimed at tackling CO2 emissions from concrete and steel production simultaneously. It suggests that throwing old concrete into steel-processing furnaces could yield both purified iron and reactivated cement as a byproduct, potentially leading to carbon-zero cement production if renewable energy is used. Concrete production is a significant contributor to global CO2 emissions, accounting for approximately 8% of the total. However, recycling concrete into a usable form for new structures has been challenging. Efforts to make concrete more environmentally friendly have included altering its composition to reduce pollution, such as substituting less harmful ingredients like limestone, or designing concrete to absorb more CO2 from the atmosphere over time. In this study, researchers from Cambridge explored the conversion of waste concrete back into clinker, the dry component of cement, for reuse. Dr Cyrille Dunant, the lead author of the study, mentioned having a notion from previous research that crushing old concrete, removing sand and stones, heating the cement to eliminate water, and then forming clinker might be feasible. They experimented with using an electric arc furnace, commonly employed for recycling steel, to aid this process. In traditional steel recycling using an electric arc furnace, a flux material, typically lime, is utilised to purify the steel. This substance captures impurities, rises to the surface, and forms a protective layer to prevent exposure to air. Afterward, the used flux is discarded as waste. In the Cambridge method, the lime flux was replaced with recycled cement paste. Remarkably, not only was the steel successfully purified, but the leftover slag could be rapidly cooled to produce new Portland cement. The resulting concrete exhibited similar performance to conventional concrete.

Next Story
Infrastructure Energy

Vedanta Aluminium Uses 1.57 bn Units of Green Energy in FY25

Vedanta Aluminium, India’s largest aluminium producer, recently reported consumption of 1.57 billion units of renewable energy in FY25, marking a significant milestone in its 2030 decarbonisation roadmap. The company also achieved an 8.96 per cent reduction in greenhouse gas (GHG) emissions intensity compared to FY21, reinforcing its leadership in India’s low-carbon manufacturing transition. During FY25, Vedanta Aluminium expanded its renewable energy portfolio through long-term power purchase agreements, strengthening its strategy to source nearly 1,500 MW of renewable power over the lon..

Next Story
Real Estate

Oberoi Group to Develop Luxury Resort at Makaibari Tea Estate

EIH Limited, the flagship company of The Oberoi Group, has announced the signing of a management agreement to develop an Oberoi luxury resort at the iconic Makaibari Tea Estate in Darjeeling. The project marks a key milestone in the Group’s long-term strategy of creating distinctive hospitality experiences in rare and environmentally significant locations. Established in 1859, Makaibari is one of the world’s oldest tea estates and is globally recognised for its Himalayan landscape, primary forests and exceptional biodiversity. Spread across 1,236 acres, the estate houses one of the world..

Next Story
Real Estate

GHV Infra Secures Rs 1.09 Bn EPC Order in Jamshedpur

GHV Infra Projects Ltd, a fast-growing EPC company in India’s infrastructure and construction sector, has recently secured a Rs 1.09 billion work order in Jamshedpur, Jharkhand. Awarded by a reputed group entity, the contract covers end-to-end civil construction, mechanical, electrical and plumbing (MEP) systems, along with high-quality finishing works for a large building development. The project will be executed over a 30-month period, with defined benchmarks for quality, safety and timely delivery. The order strengthens GHV Infra’s footprint in Jamshedpur, a key industrial hub known fo..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Open In App