IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases
OIL & GAS

IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said.

The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves.

Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming.

"While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability," he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions.

"Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner," the professor said.

The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels.

He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue.

"It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction," he added.

The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. "The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid," Das said.

"This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future," he said.

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said. The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves. Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming. While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability, he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions. Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner, the professor said. The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels. He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue. It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction, he added. The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid, Das said. This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future, he said.

Next Story
Equipment

Handling concrete better

Efficiently handling the transportation and placement of concrete is essential to help maintain the quality of construction, meet project timelines by minimising downtimes, and reduce costs – by 5 to 15 per cent, according to Sandeep Jain, Director, Arkade Developers. CW explores what the efficient handling of concrete entails.Select wellFirst, a word on choosing the right equipment, such as a mixer with a capacity aligned to the volume required onsite, from Vaibhav Kulkarni, Concrete Expert. “An overly large mixer will increase the idle time (and cost), while one that ..

Next Story
Real Estate

Elevated floors!

Raised access flooring, also called false flooring, is a less common interiors feature than false ceilings, but it has as many uses – if not more.A raised floor is a modular panel installed above the structural floor. The space beneath the raised flooring is typically used to accommodate utilities such as electrical cables, plumbing and HVAC systems. And so, raised flooring is usually associated with buildings with heavy cabling and precise air distribution needs, such as data centres.That said, CW interacted with designers and architects and discovered that false flooring can come in handy ..

Next Story
Infrastructure Urban

The Variation Challenge

A variation or change in scope clause is defined in construction contracts to take care of situations arising from change in the defined scope of work. Such changes may arise due to factors such as additions or deletions in the scope of work, modifications in the type, grade or specifications of materials, alterations in specifications or drawings, and acts or omissions of other contractors. Further, ineffective planning, inadequate investigations or surveys and requests from the employer or those within the project’s area of influence can contribute to changes in the scope of work. Ext..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?