IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases
OIL & GAS

IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said.

The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves.

Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming.

"While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability," he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions.

"Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner," the professor said.

The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels.

He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue.

"It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction," he added.

The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. "The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid," Das said.

"This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future," he said.

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said. The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves. Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming. While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability, he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions. Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner, the professor said. The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels. He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue. It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction, he added. The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid, Das said. This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future, he said.

Next Story
Infrastructure Urban

TBO Tek Q2 Profit Climbs 12%, Revenue Surges 26% YoY

TBO Tek Limited one of the world’s largest travel distribution platforms, reported a solid performance for Q2 FY26 with a 26 per cent year-on-year increase in revenue to Rs 5.68 billion, reflecting broad-based growth and improving profitability.The company recorded a Gross Transaction Value (GTV) of Rs 8,901 crore, up 12 per cent YoY, driven by strong performance across Europe, MEA, and APAC regions. Adjusted EBITDA before acquisition-related costs stood at Rs 1.04 billion, up 16 per cent YoY, translating into an 18.32 per cent margin compared to 16.56 per cent in Q1 FY26. Profit after tax r..

Next Story
Infrastructure Energy

Northern Graphite, Rain Carbon Secure R&D Grant for Greener Battery Materials

Northern Graphite Corporation and Rain Carbon Canada Inc, a subsidiary of Rain Carbon Inc, have jointly received up to C$860,000 (€530,000) in funding under the Canada–Germany Collaborative Industrial Research and Development Programme to develop sustainable battery anode materials.The two-year, C$2.2 million project aims to transform natural graphite processing by-products into high-performance, battery-grade anode material (BAM). Supported by the National Research Council of Canada Industrial Research Assistance Programme (NRC IRAP) and Germany’s Federal Ministry for Economic Affairs a..

Next Story
Infrastructure Urban

Antony Waste Q2 Revenue Jumps 16%; Subsidiary Wins Rs 3,200 Cr WtE Projects

Antony Waste Handling Cell Limited (AWHCL), a leading player in India’s municipal solid waste management sector, announced a 16 per cent year-on-year increase in total operating revenue to Rs 2.33 billion for Q2 FY26. The growth was driven by higher waste volumes, escalated contracts, and strong operational execution.EBITDA rose 18 per cent to Rs 570 million, with margins steady at 21.6 per cent, while profit after tax stood at Rs 173 million, up 13 per cent YoY. Revenue from Municipal Solid Waste Collection and Transportation (MSW C&T) reached Rs 1.605 billion, and MSW Processing re..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement