+
IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases
OIL & GAS

IIT Guwahati Develops Eco-Friendly Biofuel from Greenhouse Gases

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said.

The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves.

Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming.

"While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability," he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions.

"Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner," the professor said.

The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels.

He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue.

"It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction," he added.

The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. "The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid," Das said.

"This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future," he said.

Researchers at the Indian Institute of Technology (IIT) Guwahati have developed an advanced biological method to convert methane and carbon dioxide into cleaner biofuels using methanotrophic bacteria, officials said. This innovative approach represents a significant leap toward sustainable energy solutions and climate change mitigation, they said. The research, published in Fuel, a leading journal by Elsevier, addresses two critical global challenges--the harmful environmental impact of greenhouse gases and the depletion of fossil fuel reserves. Debasish Das, professor in the Department of Biosciences and Bioengineering, IIT Guwahati, explained that the greenhouse gas methane is 27 to 30 times more potent than carbon dioxide and is a significant contributor to global warming. While turning methane and carbon dioxide into liquid fuels can reduce emissions and provide renewable energy, existing chemical methods are energy-intensive, expensive, and produce toxic by-products, limiting their scalability, he said. Das said that their team has developed a fully biological process that uses a type of methanotrophic bacteria to convert methane and carbon dioxide into bio-methanol under mild operating conditions. Unlike traditional chemical methods, this process eliminates the need for expensive catalysts, avoids toxic by-products, and operates in a more energy-efficient manner, the professor said. The researchers claimed that the method achieved upto 87 per cent reduction in carbon monoxide, hydrocarbons, hydrogen sulphide and smoke emissions. According to Das, this research is a breakthrough as it demonstrates that bio-methanol, derived from bacteria feeding on methane and carbon dioxide, can be a viable alternative to fossil fuels. He said, unlike conventional biofuels that rely on crops and create competition with food production, their method uses greenhouse gases, avoiding the 'food vs fuel' issue. It is an environmentally and economically viable solution, utilising inexpensive resources while contributing to emissions reduction, he added. The professor asserted that with the potential to reduce reliance on fossil fuels and minimise greenhouse gas emissions, this advancement represents a significant stride toward a cleaner and greener future. The biological conversion of methane and carbon dioxide into bio-methanol not only provides a cleaner fuel alternative but also has industrial applications as a precursor for producing chemicals like formaldehyde and acetic acid, Das said. This process offers immense potential to decarbonise critical industries, including oil and gas, refineries, and chemical manufacturing, paving the way for a more sustainable future, he said.

Next Story
Infrastructure Urban

India to Invest Rs 600 Billion to Upgrade 1,000 ITIs

As part of its drive to modernise vocational training, the Ministry of Skill Development and Entrepreneurship (MSDE), in collaboration with Gujarat’s Labour and Employment Department, held a State-Level Workshop at the NAMTECH Campus within IIT-Gandhinagar to discuss the National Scheme for ITI Upgradation.The consultation brought together key stakeholders from industry and the training ecosystem to align expectations and support implementation of the scheme, which aims to transform 1,000 Industrial Training Institutes (ITIs) across India using a hub-and-spoke model. The total outlay stands ..

Next Story
Infrastructure Urban

India Unveils Rs 600 Billion Maritime Finance Push

The Ministry of Ports, Shipping & Waterways (MoPSW) hosted the Maritime Financing Summit 2025 in New Delhi, bringing together over 250 stakeholders including policymakers, industry leaders, global investors, and financial institutions. The summit, held under the ambit of Maritime Amrit Kaal Vision (MAKV) 2047, focused on transforming India into a leading maritime power with strengthened financial, infrastructural, and technological capabilities.Union Minister Sarbananda Sonowal emphasised India's strategic progress, noting that average port turnaround times have dropped from four days to u..

Next Story
Infrastructure Urban

Govt Allocates Rs 500 Million To Boost Community Radio

The Central Government, through its ‘Supporting Community Radio Movement in India’ scheme, has allocated Rs 500 million to strengthen the community radio ecosystem across the country. The initiative aims to assist both newly established and long-operational Community Radio Stations (CRSs), ensuring their relevance to local educational, social, cultural, and developmental needs.According to the policy published by the Ministry of Information and Broadcasting, CRSs may be set up by not-for-profit organisations with at least three years of demonstrated community service. These stations are ex..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?