Scientists develop system to recover waste heat from PV Units
POWER & RENEWABLE ENERGY

Scientists develop system to recover waste heat from PV Units

A thermally-coupled electrically-separated hybrid thermoelectric, photovoltaic system (HTEPV)-based device based on a thermoelectric generator and a wide-gap perovskite solar cell has been fabricated by scientists from the University of Milano-Bicocca, University of Rome Tor Vergata, and Massachusetts Institute of Technology. The device allegedly recovers waste heat from the PV unit and generates additional power.

Due to their high efficiency and low cost, silicon solar cells dominate the PV market. However, they are sensitive to temperature, which can result in significant energy losses throughout a solar panel's lifetime. Temperature changes can cause them to lose up to 20% of their room temperature efficiency. Hybridization with thermoelectric generators (TEGs) has recently gotten a lot of attention.

TEG can recover heat lost from solar cells in HTEPV systems to generate additional power and improve the overall device output power and efficiency.

Many studies and reviews have been conducted on HTEPV systems. However, opinions on how effective they are have been mixed. HTEPV systems have been described as both convenient and ineffective in terms of increasing PV efficiency.

For the experiment, the researchers used three different types of solar cells: perovskite, gallium indium phosphide (GaInP), and amorphous silicon (a-Si).

A customised bismuth telluride TEG hot plate with a surface area of 1 cm² is placed in thermal contact with a perovskite solar cell's back using a layer of Silicone-free thermal grease. Thermally, the two units are connected, but electrically, they are not. The vacuum chamber bottom was attached to the TEG cold side with thermal grease. For the final hybrid device, a K-type thermocouple was used to regulate the temperature. The temperature of the chamber bottom was controlled by a dissipation liquid circuit that was fed by a temperature-adjustable chiller.

A layer of thermal grease was used to connect the solar cells to the TEG top electrode, and a K thermocouple was placed between the hot electrode and the solar cell bottom. A Keithley 2440 source metre was used to record the J-V curves, which was controlled by a LabView programme.

To determine the effect of optical concentration on temperature sensitivity, the researchers characterised all three cells between 1 and 5 Suns. The incoming power of the solar simulator was continuously measured and adjusted using a certified reference silicon solar cell. To accurately evaluate incoming power density, a stainless-steel mask with known areas was used.

In comparison to a-Si and GaInP, perovskites showed efficiency gains of more than 2% at all-optical concentrations, namely 2.64% at 337.43 K, 2.90% at 340.59 K, and 3.05% at 343.13 K. At moderate temperatures of around 340 K, maximum efficiency gains were achieved.

This temperature is well within the range of temperatures commonly experienced by solar panels, implying that complex thermal management strategies are not required. As a result, the HTEPV device is directly comparable to and compatible with real solar cells in this case.

These improvements were then experimentally confirmed in the case of perovskites solar cells, with the highest gains occurring at conventional PVs normal operating temperatures. This experiment accurately demonstrated the thermoelectric hybridisation of solar cells' true potential.

Image Source


Also read: BHEL floats tender for supplying multicrystalline solar modules

A thermally-coupled electrically-separated hybrid thermoelectric, photovoltaic system (HTEPV)-based device based on a thermoelectric generator and a wide-gap perovskite solar cell has been fabricated by scientists from the University of Milano-Bicocca, University of Rome Tor Vergata, and Massachusetts Institute of Technology. The device allegedly recovers waste heat from the PV unit and generates additional power. Due to their high efficiency and low cost, silicon solar cells dominate the PV market. However, they are sensitive to temperature, which can result in significant energy losses throughout a solar panel's lifetime. Temperature changes can cause them to lose up to 20% of their room temperature efficiency. Hybridization with thermoelectric generators (TEGs) has recently gotten a lot of attention. TEG can recover heat lost from solar cells in HTEPV systems to generate additional power and improve the overall device output power and efficiency. Many studies and reviews have been conducted on HTEPV systems. However, opinions on how effective they are have been mixed. HTEPV systems have been described as both convenient and ineffective in terms of increasing PV efficiency. For the experiment, the researchers used three different types of solar cells: perovskite, gallium indium phosphide (GaInP), and amorphous silicon (a-Si). A customised bismuth telluride TEG hot plate with a surface area of 1 cm² is placed in thermal contact with a perovskite solar cell's back using a layer of Silicone-free thermal grease. Thermally, the two units are connected, but electrically, they are not. The vacuum chamber bottom was attached to the TEG cold side with thermal grease. For the final hybrid device, a K-type thermocouple was used to regulate the temperature. The temperature of the chamber bottom was controlled by a dissipation liquid circuit that was fed by a temperature-adjustable chiller. A layer of thermal grease was used to connect the solar cells to the TEG top electrode, and a K thermocouple was placed between the hot electrode and the solar cell bottom. A Keithley 2440 source metre was used to record the J-V curves, which was controlled by a LabView programme. To determine the effect of optical concentration on temperature sensitivity, the researchers characterised all three cells between 1 and 5 Suns. The incoming power of the solar simulator was continuously measured and adjusted using a certified reference silicon solar cell. To accurately evaluate incoming power density, a stainless-steel mask with known areas was used. In comparison to a-Si and GaInP, perovskites showed efficiency gains of more than 2% at all-optical concentrations, namely 2.64% at 337.43 K, 2.90% at 340.59 K, and 3.05% at 343.13 K. At moderate temperatures of around 340 K, maximum efficiency gains were achieved. This temperature is well within the range of temperatures commonly experienced by solar panels, implying that complex thermal management strategies are not required. As a result, the HTEPV device is directly comparable to and compatible with real solar cells in this case. These improvements were then experimentally confirmed in the case of perovskites solar cells, with the highest gains occurring at conventional PVs normal operating temperatures. This experiment accurately demonstrated the thermoelectric hybridisation of solar cells' true potential. Image Source Also read: BHEL floats tender for supplying multicrystalline solar modules

Next Story
Infrastructure Urban

Concord Control Systems Limited Reports ~85% YoY Growth in H1 FY26

Concord Control Systems Limited (BSE: CNCRD | 543619), India’s leading manufacturer of embedded electronic systems and critical electronic solutions, announced its unaudited financial results for the half year ended September 30, 2025.Financial Highlights – H1 FY26 (YoY Comparison)Revenue from Operations rose to ₹815.45 million, up from ₹497.53 million in H1 FY25, marking a 63.90% year-on-year growth.EBITDA increased to ₹217.34 million, compared to ₹142 million in the same period last year.EBITDA Margin stood at 26.65%, compared to 28.54% in H1 FY25, with the decline attributed to ..

Next Story
Infrastructure Urban

Gateway Distriparks Announces Q2 FY25 Results

Gateway Distriparks Limited (GDL), one of India’s leading multimodal logistics providers, announced its financial results for the quarter ended 30 September 2025.For Q2, the company reported total revenue of INR 154.8 crore (H1: INR 316.9 crore), EBITDA of INR 20.56 crore (H1: INR 45.65 crore), PBT of INR –4.23 crore (H1: INR –0.28 crore), and PAT of INR –2.91 crore (H1: INR –0.37 crore). The company stated that these numbers reflect the consolidation of accounts following Snowman Logistics transitioning from an associate company to a subsidiary in December 2024.Commenting on the per..

Next Story
Infrastructure Transport

Last-Mile Connectivity a Prime Focus, Says Ms. Ashwini Bhide,

The IMC Chamber of Commerce and Industry (IMC) hosted a high-impact Managing Committee session today on the theme “Mumbai Metro: Transforming Connectivity and Commuting.” The session featured an insightful address by Ms. Ashwini Bhide, Managing Director, Mumbai Metro Rail Corporation Ltd. (MMRCL), who shared updates on key transport infrastructure developments across Mumbai and the MMR region.Emphasising the city’s critical economic role, Ms. Bhide noted, “Mumbai is the economic powerhouse of Maharashtra, with more than 95% of the region’s population living in urban areas. As Maharas..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement