IIT Mandi develops AI-based structural health monitoring
Technology

IIT Mandi develops AI-based structural health monitoring

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.

The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.

Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.

The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.

The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.

One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.

In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.

This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Next Story
Equipment

Handling concrete better

Efficiently handling the transportation and placement of concrete is essential to help maintain the quality of construction, meet project timelines by minimising downtimes, and reduce costs – by 5 to 15 per cent, according to Sandeep Jain, Director, Arkade Developers. CW explores what the efficient handling of concrete entails.Select wellFirst, a word on choosing the right equipment, such as a mixer with a capacity aligned to the volume required onsite, from Vaibhav Kulkarni, Concrete Expert. “An overly large mixer will increase the idle time (and cost), while one that ..

Next Story
Real Estate

Elevated floors!

Raised access flooring, also called false flooring, is a less common interiors feature than false ceilings, but it has as many uses – if not more.A raised floor is a modular panel installed above the structural floor. The space beneath the raised flooring is typically used to accommodate utilities such as electrical cables, plumbing and HVAC systems. And so, raised flooring is usually associated with buildings with heavy cabling and precise air distribution needs, such as data centres.That said, CW interacted with designers and architects and discovered that false flooring can come in handy ..

Next Story
Infrastructure Urban

The Variation Challenge

A variation or change in scope clause is defined in construction contracts to take care of situations arising from change in the defined scope of work. Such changes may arise due to factors such as additions or deletions in the scope of work, modifications in the type, grade or specifications of materials, alterations in specifications or drawings, and acts or omissions of other contractors. Further, ineffective planning, inadequate investigations or surveys and requests from the employer or those within the project’s area of influence can contribute to changes in the scope of work. Ext..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?