+
Radiative Paint reduces electricity consumption for cooling buildings
Paint

Radiative Paint reduces electricity consumption for cooling buildings

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days.

Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management.

At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give.

The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight.

The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion.

?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research.

The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days. Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management. At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give. The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight. The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion. ?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

Next Story
Infrastructure Transport

Lucknow Metro East-West Corridor Consultancy Contract Awarded

The Uttar Pradesh Metro Rail Corporation has awarded the first construction-related consultancy contract for the Lucknow Metro East West Corridor to a joint venture of AYESA Ingenieria Arquitectura SAU and AYESA India Pvt Ltd. The firm was declared the lowest bidder for the Detailed Design Consultant contract for Lucknow Metro Line-2 under Phase 1B and the contract was recommended following the financial bid. The contract is valued at Rs 159.0 million (mn), covering design services for the corridor. Lucknow Metro Line-2 envisages the construction of an 11.165 kilometre corridor connecting Cha..

Next Story
Infrastructure Urban

Div Com Kashmir Urges Fast Tracking Of Jhelum Water Transport Project

The Divisional Commissioner of Kashmir has called for the fast-tracking of the Jhelum water transport project, urging district administrations and relevant agencies to accelerate planning and clearances. In a meeting convened at the divisional headquarters, the commissioner instructed officials from irrigation, public health engineering and municipal departments to prioritise the project and coordinate survey and design work. The directive emphasised removal of administrative bottlenecks and close monitoring to ensure timely mobilisation of resources and contractors. Officials were told to in..

Next Story
Infrastructure Urban

Interarch Reports Strong Q3 And Nine Month Results

Interarch Building Solutions Limited reported unaudited results for the third quarter and nine months ended 31 December 2025, recording strong revenue growth driven by execution and a robust order book. Net revenue for the third quarter rose by 43.7 per cent to Rs 5.225 billion (bn), compared with Rs 3.636 bn a year earlier, reflecting heightened demand in pre-engineered building projects. The company’s total order book as at 31 January 2026 stood at Rs 16.85 bn, supporting near-term visibility. EBITDA excluding other income for the quarter increased by 43.2 per cent to Rs 503 million (mn),..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Open In App