IISc researchers create enzymatic platform to convert fatty acids to hydrocarbons
ECONOMY & POLICY

IISc researchers create enzymatic platform to convert fatty acids to hydrocarbons

Researchers at the Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), had developed an enzymatic platform capable of efficiently converting naturally abundant and inexpensive fatty acids into valuable hydrocarbons known as 1-alkenes, which were promising biofuels. Considering the finite availability and polluting nature of fossil fuels, scientists were increasingly exploring sustainable fuel pathways involving hydrocarbons. These compounds showed significant potential as "drop-in" biofuels, which could be blended and used with existing fuels and infrastructure, according to the Bengaluru-based IISc.

These hydrocarbons could potentially be synthesized on a large scale using microorganism "factories." Enzymes facilitating the mass production of these hydrocarbons were highly sought after. Hydrocarbons also found extensive use in the polymer, detergent, and lubricant industries, IISc noted in a press release.

In a previous study, the IISc team had purified and characterized an enzyme called UndB, which was bound to the membranes of living cells, especially certain bacteria. It was capable of converting fatty acids to 1-alkenes at the fastest rate currently possible. However, the team discovered that the process was not very efficient, as the enzyme would become inactivated after just a few cycles.

Upon further investigation, they realized that H2O2, a byproduct of the reaction process, was inhibiting UndB. In the current study published in "Science Advances," the team had circumvented this challenge by adding another enzyme called catalase to the reaction mix. Tabish Iqbal, the first author of the study and a PhD student at IPC, explained that catalase degraded the H2O2 produced. Adding catalase enhanced the enzyme's activity 19-fold, from 14 to 265 turnovers (indicating the number of active cycles an enzyme completed before getting inactivated).

Excited by this finding, the team decided to create an artificial fusion protein combining UndB with catalase by introducing a fused genetic code via carriers called plasmids into E.coli bacteria. Under the right conditions, these E.coli would then act as a "whole cell biocatalyst," converting fatty acids and producing alkenes, the release said.

Researchers at the Department of Inorganic and Physical Chemistry, Indian Institute of Science (IISc), had developed an enzymatic platform capable of efficiently converting naturally abundant and inexpensive fatty acids into valuable hydrocarbons known as 1-alkenes, which were promising biofuels. Considering the finite availability and polluting nature of fossil fuels, scientists were increasingly exploring sustainable fuel pathways involving hydrocarbons. These compounds showed significant potential as drop-in biofuels, which could be blended and used with existing fuels and infrastructure, according to the Bengaluru-based IISc. These hydrocarbons could potentially be synthesized on a large scale using microorganism factories. Enzymes facilitating the mass production of these hydrocarbons were highly sought after. Hydrocarbons also found extensive use in the polymer, detergent, and lubricant industries, IISc noted in a press release. In a previous study, the IISc team had purified and characterized an enzyme called UndB, which was bound to the membranes of living cells, especially certain bacteria. It was capable of converting fatty acids to 1-alkenes at the fastest rate currently possible. However, the team discovered that the process was not very efficient, as the enzyme would become inactivated after just a few cycles. Upon further investigation, they realized that H2O2, a byproduct of the reaction process, was inhibiting UndB. In the current study published in Science Advances, the team had circumvented this challenge by adding another enzyme called catalase to the reaction mix. Tabish Iqbal, the first author of the study and a PhD student at IPC, explained that catalase degraded the H2O2 produced. Adding catalase enhanced the enzyme's activity 19-fold, from 14 to 265 turnovers (indicating the number of active cycles an enzyme completed before getting inactivated). Excited by this finding, the team decided to create an artificial fusion protein combining UndB with catalase by introducing a fused genetic code via carriers called plasmids into E.coli bacteria. Under the right conditions, these E.coli would then act as a whole cell biocatalyst, converting fatty acids and producing alkenes, the release said.

Next Story
Infrastructure Urban

India To Invest $37 Billion To Boost Petrochemical Capacity

India is set to become a major global player in the petrochemicals industry, driven by a planned capital expenditure of $37 billion (Rs 3.1 trillion) aimed at reducing import dependency and enhancing self-sufficiency, according to S&P Global Ratings.In its latest report titled “First China, Now India: Self-Sufficiency Goals Will Add To Petrochemicals Supply”, S&P said India’s large-scale capacity expansion—mirroring China’s earlier push—will likely intensify oversupply pressures in Asia’s petrochemical markets.Currently the world’s third-largest petrochemical consumer a..

Next Story
Infrastructure Transport

Indian Railways Expands Global Exports Of Rail Equipment

Indian Railways has announced that it is rapidly emerging as a global exporter of railway equipment, including bogies, coaches, locomotives, and propulsion systems, under the government’s ‘Make in India, Make for the World’ initiative.According to an official statement, India’s railway products are now reaching over 16 international markets, reflecting the country’s growing capacity to design, develop, and deliver world-class rail solutions.Metro coaches have been exported to Australia and Canada; bogies to the United Kingdom, Saudi Arabia, France, and Australia; propulsion systems t..

Next Story
Infrastructure Transport

RailTel Awards Rs 163 Million Contract To RTNS Technology

RailTel Corporation of India Limited (RailTel), a Mini Ratna Public Sector Undertaking, has awarded a domestic work order worth Rs 163 million to RTNS Technology Private Limited.The contract, issued on 30 September 2025, involves the supply and installation of equipment and related services for one of RailTel’s key customers. The project underscores RailTel’s commitment to advancing technology and communication infrastructure through collaboration with domestic system integrators.RTNS Technology Private Limited, an ISO-certified system integrator, provides comprehensive solutions for perim..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?