Here’s how Bogibeel Bridge was constructed!
ROADS & HIGHWAYS

Here’s how Bogibeel Bridge was constructed!

India recently welcomed one of its biggest landmarks! The country’s longest rail-cum-road bridge—Bogibeel Bridge over river Brahmaputra in Assam—was recently inaugurated, after having encountered several engineering and other challenges, almost 22 years after its foundation stone was laid in January 1997.

For the construction of this mammoth bridge, HCC set-up huge facilities on the left bank of the river for the three sequences of fabrication, assembly and launching.

Fabrication: Fabrication shops of 2,000 mt per month capacity were set up with two parallel bays. The team had assembled customised platforms in house to fabricate and fit various joints employing gas metal arc welding (GMAW). To ensure error-free welding, magnetic particle testing, dry penetration testing and ultrasonic testing were deployed. A specialised beam-making CMM machine from Italy has been used for the first time in India for the fabrication of box and I-sections using the submerged arc welding (SAW) procedure. A blasting gun was used to achieve the surface roughness of SA 2½ before applying paint.

Assembly: Thereafter, these fabricated sections were moved to the assembly shop where they were installed on their designated beds. They were correctly positioned through jacking and welded by GMAW process. These segments were arranged in a sequence and sent for the vertical assembly using horizontal lifters. After installation of the top and bottom girders, the final truss bridge dimension design chambers were examined thoroughly and approved to complete the fitout. A nose was fabricated and fitted on the first truss before launching it on the piers.

Launching: While determining the methodology of erecting the steel trusses on pillars, the engineers had two choices: lift the spans with floating cranes or erect them with a launching truss. They had to choose the more practical and economical option. After weighing the pros and cons, the HCC team came up with the solution of pulling the steel trusses with a set of jacks and winches on the pillars. This eliminated the need to enter the river, which was often turbulent during monsoons. Besides, it also ensured safer working conditions, precluded the mobilisation of a giant set-up on either side of the river having a width of 4.8 km, and accelerated the pace of the project. A 1,000-tonne hydraulic jack and strand jacks linked with the substructures have been used for moving the steel truss over the pillars. Two sets of steel cable strands were anchored to the end cross beams of the truss and hauled by hydraulic jacks. The truss slides over the launching bearing with the help of sliding plates, which were inserted at one end and taken out at the other, thereby moving the truss towards its desired position. To limit the required launching forces, the superstructure was pulled in four launching segments of 10 spans each. Thus, the superstructure was pulled over the pillars just like a train of 10 spans, with each span weighing 1,700 mt. Finally, the launching bearings were replaced by final bearings. The tracks were laid and the road was constructed adapting RCC construction. After fulfilling the electrical and other ancillary requirements, the assignment was completed.

India recently welcomed one of its biggest landmarks! The country’s longest rail-cum-road bridge—Bogibeel Bridge over river Brahmaputra in Assam—was recently inaugurated, after having encountered several engineering and other challenges, almost 22 years after its foundation stone was laid in January 1997. For the construction of this mammoth bridge, HCC set-up huge facilities on the left bank of the river for the three sequences of fabrication, assembly and launching. Fabrication: Fabrication shops of 2,000 mt per month capacity were set up with two parallel bays. The team had assembled customised platforms in house to fabricate and fit various joints employing gas metal arc welding (GMAW). To ensure error-free welding, magnetic particle testing, dry penetration testing and ultrasonic testing were deployed. A specialised beam-making CMM machine from Italy has been used for the first time in India for the fabrication of box and I-sections using the submerged arc welding (SAW) procedure. A blasting gun was used to achieve the surface roughness of SA 2½ before applying paint. Assembly: Thereafter, these fabricated sections were moved to the assembly shop where they were installed on their designated beds. They were correctly positioned through jacking and welded by GMAW process. These segments were arranged in a sequence and sent for the vertical assembly using horizontal lifters. After installation of the top and bottom girders, the final truss bridge dimension design chambers were examined thoroughly and approved to complete the fitout. A nose was fabricated and fitted on the first truss before launching it on the piers. Launching: While determining the methodology of erecting the steel trusses on pillars, the engineers had two choices: lift the spans with floating cranes or erect them with a launching truss. They had to choose the more practical and economical option. After weighing the pros and cons, the HCC team came up with the solution of pulling the steel trusses with a set of jacks and winches on the pillars. This eliminated the need to enter the river, which was often turbulent during monsoons. Besides, it also ensured safer working conditions, precluded the mobilisation of a giant set-up on either side of the river having a width of 4.8 km, and accelerated the pace of the project. A 1,000-tonne hydraulic jack and strand jacks linked with the substructures have been used for moving the steel truss over the pillars. Two sets of steel cable strands were anchored to the end cross beams of the truss and hauled by hydraulic jacks. The truss slides over the launching bearing with the help of sliding plates, which were inserted at one end and taken out at the other, thereby moving the truss towards its desired position. To limit the required launching forces, the superstructure was pulled in four launching segments of 10 spans each. Thus, the superstructure was pulled over the pillars just like a train of 10 spans, with each span weighing 1,700 mt. Finally, the launching bearings were replaced by final bearings. The tracks were laid and the road was constructed adapting RCC construction. After fulfilling the electrical and other ancillary requirements, the assignment was completed.

Next Story
Infrastructure Urban

TBO Tek Q2 Profit Climbs 12%, Revenue Surges 26% YoY

TBO Tek Limited one of the world’s largest travel distribution platforms, reported a solid performance for Q2 FY26 with a 26 per cent year-on-year increase in revenue to Rs 5.68 billion, reflecting broad-based growth and improving profitability.The company recorded a Gross Transaction Value (GTV) of Rs 8,901 crore, up 12 per cent YoY, driven by strong performance across Europe, MEA, and APAC regions. Adjusted EBITDA before acquisition-related costs stood at Rs 1.04 billion, up 16 per cent YoY, translating into an 18.32 per cent margin compared to 16.56 per cent in Q1 FY26. Profit after tax r..

Next Story
Infrastructure Energy

Northern Graphite, Rain Carbon Secure R&D Grant for Greener Battery Materials

Northern Graphite Corporation and Rain Carbon Canada Inc, a subsidiary of Rain Carbon Inc, have jointly received up to C$860,000 (€530,000) in funding under the Canada–Germany Collaborative Industrial Research and Development Programme to develop sustainable battery anode materials.The two-year, C$2.2 million project aims to transform natural graphite processing by-products into high-performance, battery-grade anode material (BAM). Supported by the National Research Council of Canada Industrial Research Assistance Programme (NRC IRAP) and Germany’s Federal Ministry for Economic Affairs a..

Next Story
Infrastructure Urban

Antony Waste Q2 Revenue Jumps 16%; Subsidiary Wins Rs 3,200 Cr WtE Projects

Antony Waste Handling Cell Limited (AWHCL), a leading player in India’s municipal solid waste management sector, announced a 16 per cent year-on-year increase in total operating revenue to Rs 2.33 billion for Q2 FY26. The growth was driven by higher waste volumes, escalated contracts, and strong operational execution.EBITDA rose 18 per cent to Rs 570 million, with margins steady at 21.6 per cent, while profit after tax stood at Rs 173 million, up 13 per cent YoY. Revenue from Municipal Solid Waste Collection and Transportation (MSW C&T) reached Rs 1.605 billion, and MSW Processing re..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement