Green Hydrogen's Carbon Footprint May Exceed Brown Hydrogen
POWER & RENEWABLE ENERGY

Green Hydrogen's Carbon Footprint May Exceed Brown Hydrogen

New research from Wood Mackenzie's Horizons report sheds light on a concerning trend in the burgeoning green hydrogen industry: despite its promise as a clean energy source, emissions from green hydrogen production could outstrip those of brown hydrogen, particularly if electrolyzers are connected to grids powered by fossil fuels.

The report reveals a potential emissions scenario where green hydrogen, produced from 100% grid power, could carry a carbon footprint as high as 50 kilograms of CO2 equivalent per kilogram of hydrogen (kgCO2e/kgH2). This figure, surpassing the emissions associated with brown hydrogen, underscores the critical importance of ensuring electrolyzers run exclusively on renewable energy sources to maintain the environmental integrity of green hydrogen production.

According to the findings, approximately 30% of the 565 gigawatts (GW) of announced or operational green hydrogen projects could be at risk of contributing to this heightened carbon footprint if they connect to grids powered by non-renewable sources. This prospect poses a significant challenge to the global hydrogen market, which currently relies heavily on carbon-intensive grey or brown hydrogen, totaling around 90 million tons per annum.

The primary source of emissions in green hydrogen production stems from the electricity used by the electrolyzer. To mitigate these emissions and ensure the sustainability of green hydrogen, the report suggests a shift towards electrolyzers powered entirely by renewable energy.

However, the transition to renewable-powered electrolyzers faces hurdles, including the intermittent nature of renewable energy sources. Many projects opt to connect to the grid to maximize electrolyzer utilization and minimize costs. Yet, if access to renewable power is limited, these projects may inadvertently contribute to increased carbon emissions, highlighting the need for careful planning and investment in renewable infrastructure.

The report also underscores the importance of considering the full life-cycle emissions of hydrogen production and distribution. While carbon capture technologies offer promise in reducing emissions associated with blue hydrogen production, challenges remain in scaling these technologies and addressing emissions from other stages of the value chain, such as transportation and processing.

Regulatory compliance emerges as a critical consideration for hydrogen producers and consumers alike. Current standards, such as those set by the EU and Japan, focus primarily on production emissions, overlooking emissions from transport and processing. To meet evolving regulatory requirements, stakeholders must prioritize comprehensive life-cycle assessments and emissions reductions across all stages of hydrogen production and distribution.

Subsidies play a crucial role in supporting the transition to low-carbon hydrogen production. Incentive frameworks, such as those proposed by the European Commission and implemented by the UK government, aim to promote the use of renewable energy in hydrogen production and incentivize emissions reductions throughout the value chain.

Looking ahead, the future of green hydrogen hinges on strategic investments in renewable infrastructure, technological innovation, and regulatory frameworks that prioritize sustainability. As governments and industries around the world commit to decarbonization goals, the race to unlock the full potential of green hydrogen as a clean energy solution intensifies.

New research from Wood Mackenzie's Horizons report sheds light on a concerning trend in the burgeoning green hydrogen industry: despite its promise as a clean energy source, emissions from green hydrogen production could outstrip those of brown hydrogen, particularly if electrolyzers are connected to grids powered by fossil fuels.The report reveals a potential emissions scenario where green hydrogen, produced from 100% grid power, could carry a carbon footprint as high as 50 kilograms of CO2 equivalent per kilogram of hydrogen (kgCO2e/kgH2). This figure, surpassing the emissions associated with brown hydrogen, underscores the critical importance of ensuring electrolyzers run exclusively on renewable energy sources to maintain the environmental integrity of green hydrogen production.According to the findings, approximately 30% of the 565 gigawatts (GW) of announced or operational green hydrogen projects could be at risk of contributing to this heightened carbon footprint if they connect to grids powered by non-renewable sources. This prospect poses a significant challenge to the global hydrogen market, which currently relies heavily on carbon-intensive grey or brown hydrogen, totaling around 90 million tons per annum.The primary source of emissions in green hydrogen production stems from the electricity used by the electrolyzer. To mitigate these emissions and ensure the sustainability of green hydrogen, the report suggests a shift towards electrolyzers powered entirely by renewable energy.However, the transition to renewable-powered electrolyzers faces hurdles, including the intermittent nature of renewable energy sources. Many projects opt to connect to the grid to maximize electrolyzer utilization and minimize costs. Yet, if access to renewable power is limited, these projects may inadvertently contribute to increased carbon emissions, highlighting the need for careful planning and investment in renewable infrastructure.The report also underscores the importance of considering the full life-cycle emissions of hydrogen production and distribution. While carbon capture technologies offer promise in reducing emissions associated with blue hydrogen production, challenges remain in scaling these technologies and addressing emissions from other stages of the value chain, such as transportation and processing.Regulatory compliance emerges as a critical consideration for hydrogen producers and consumers alike. Current standards, such as those set by the EU and Japan, focus primarily on production emissions, overlooking emissions from transport and processing. To meet evolving regulatory requirements, stakeholders must prioritize comprehensive life-cycle assessments and emissions reductions across all stages of hydrogen production and distribution.Subsidies play a crucial role in supporting the transition to low-carbon hydrogen production. Incentive frameworks, such as those proposed by the European Commission and implemented by the UK government, aim to promote the use of renewable energy in hydrogen production and incentivize emissions reductions throughout the value chain.Looking ahead, the future of green hydrogen hinges on strategic investments in renewable infrastructure, technological innovation, and regulatory frameworks that prioritize sustainability. As governments and industries around the world commit to decarbonization goals, the race to unlock the full potential of green hydrogen as a clean energy solution intensifies.

Next Story
Infrastructure Transport

Tata, Airbus to Build India’s First Private Helicopter Line

In a landmark development for India’s aerospace sector, Tata Advanced Systems Limited (TASL) and Airbus will establish the country’s first private-sector helicopter assembly line in Vemagal, Karnataka. The facility will manufacture the Airbus H125 and H125M, marking a significant milestone in India’s push for self-reliance in aviation and defence manufacturing. The new Final Assembly Line (FAL) will produce the H125, the world’s best-selling single-engine helicopter, known for its versatility and performance in extreme environments. The first ‘Made in India’ H125 is expected to ro..

Next Story
Infrastructure Urban

NeGD to Support Bharat Taxi in Building Cooperative Ride Platform

In a significant move for India’s digital and mobility transformation, the National e-Governance Division (NeGD) of the Digital India Corporation, under the Ministry of Electronics and Information Technology (MeitY), has entered into an advisory partnership with Sahakar Taxi Cooperative Limited, the company behind Bharat Taxi — a first-of-its-kind, cooperative-led national ride-hailing platform. A Memorandum of Understanding (MoU) has been signed between NeGD and Sahakar Taxi to provide strategic advisory and technical support covering key areas such as platform integration, cybersecurity..

Next Story
Technology

MeitY Hosts Pre-Summit for India–AI Impact Summit 2026

The Ministry of Electronics and Information Technology (MeitY), Government of India, hosted a series of Pre-Summit events for the upcoming India–AI Impact Summit 2026 at the India Mobile Congress (IMC) 2025 in New Delhi. These sessions mark a key milestone ahead of the main summit, scheduled for 19–20 February 2026 at Bharat Mandapam, New Delhi. Delivering the inaugural address, S. Krishnan, Secretary, MeitY, highlighted India’s innovative and frugal approach to AI development. “We have adopted innovative means by learning from others’ experiences to build projects and products that..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?