Metal-free Organic Catalyst Makes Hydrogen Fuel from Mechanical Energy
POWER & RENEWABLE ENERGY

Metal-free Organic Catalyst Makes Hydrogen Fuel from Mechanical Energy

Researchers have developed a novel, cost-effective, metal-free porous organic catalyst for efficient H2 production by harvesting mechanical energy.

In order to reduce the global warming and related impact of fossil fuels, transition towards sustainable alternatives based on renewable energy becomes increasingly critical. Green hydrogen (H?) fuel has emerged as a game-changing renewable and clean-burning energy source, which generates no direct carbon emissions and only water as a by-product when used in fuel cells. Recognising the critical role of green H2 in sustainable energy, the Government of India launched the National Green Hydrogen Mission to drive large-scale production, promote research and innovation, and position the country as a global leader in H2 economy.

Among the environmentally benign methods of H2 production, overall water splitting stands out as an e?ective and scalable technique that relies on a catalytic strategy since the reaction is energetically uphill. Piezocatalysis has emerged as a promising catalytic technology which harvests mechanical perturbations with a piezoelectric material to generate charge carriers that are utilised to catalyse water splitting.

In recent groundbreaking research work, Professor Tapas K Maji from Chemistry and Physics of Materials Unit at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru (an autonomous institution under the Department of Science & Technology, Govt. of India) and his research team have developed a metal-free donor-acceptor based covalent-organic framework (COF) for piezocatalytic water splitting. This study published in Advanced Functional Materials demonstrates a Covalent organic framework (COF) built from imide linkages between organic donor molecule tris(4-aminophenyl)amine (TAPA) and acceptor molecule pyromellitic dianhydride (PDA) acceptor exhibiting unique ferrielectric (FiE) ordering, which showed efficient piezocatalytic activity for water splitting to produce H2.

This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric (FE) materials as piezocatalysts for catalysing water splitting reaction. Conventional FE materials have limited charges confined at the surface only which usually lead to quick saturation of their piezocatalytic activity. In contrast, FiE ordering in a COF provides a multifold enhanced number of charges at the pore surfaces owing to the large local electric fields. The sponge-like porous structure of a COF allows the diffusion of water molecules to efficiently access and utilize these charge carriers for catalysis, giving ultra-high H2 production yields and outperforming all oxide-based inorganic piezocatalysts.

News source: PIB

Researchers have developed a novel, cost-effective, metal-free porous organic catalyst for efficient H2 production by harvesting mechanical energy. In order to reduce the global warming and related impact of fossil fuels, transition towards sustainable alternatives based on renewable energy becomes increasingly critical. Green hydrogen (H?) fuel has emerged as a game-changing renewable and clean-burning energy source, which generates no direct carbon emissions and only water as a by-product when used in fuel cells. Recognising the critical role of green H2 in sustainable energy, the Government of India launched the National Green Hydrogen Mission to drive large-scale production, promote research and innovation, and position the country as a global leader in H2 economy. Among the environmentally benign methods of H2 production, overall water splitting stands out as an e?ective and scalable technique that relies on a catalytic strategy since the reaction is energetically uphill. Piezocatalysis has emerged as a promising catalytic technology which harvests mechanical perturbations with a piezoelectric material to generate charge carriers that are utilised to catalyse water splitting. In recent groundbreaking research work, Professor Tapas K Maji from Chemistry and Physics of Materials Unit at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru (an autonomous institution under the Department of Science & Technology, Govt. of India) and his research team have developed a metal-free donor-acceptor based covalent-organic framework (COF) for piezocatalytic water splitting. This study published in Advanced Functional Materials demonstrates a Covalent organic framework (COF) built from imide linkages between organic donor molecule tris(4-aminophenyl)amine (TAPA) and acceptor molecule pyromellitic dianhydride (PDA) acceptor exhibiting unique ferrielectric (FiE) ordering, which showed efficient piezocatalytic activity for water splitting to produce H2. This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric (FE) materials as piezocatalysts for catalysing water splitting reaction. Conventional FE materials have limited charges confined at the surface only which usually lead to quick saturation of their piezocatalytic activity. In contrast, FiE ordering in a COF provides a multifold enhanced number of charges at the pore surfaces owing to the large local electric fields. The sponge-like porous structure of a COF allows the diffusion of water molecules to efficiently access and utilize these charge carriers for catalysis, giving ultra-high H2 production yields and outperforming all oxide-based inorganic piezocatalysts. News source: PIB

Next Story
Equipment

Liebherr Cranes Rapidly Progress on Scandinavia’s Second Tallest Tower

An impressive structure has emerged at remarkable speed in Karlskrona. Standing at a height of 200 metres, the NKT Tower 3 is the second tallest tower in Scandinavia. Two Liebherr cranes, a 542 HC-L 12/24 Litronic and a 258 HC-L 10/18 Fibre, are a key part of this ambitious construction project. The tower which is built by Skanska will be an integral part of the world’s largest high-voltage submarine cable factory, which will supply wind turbines and solar parks with essential components. Weighing 28,000 tonnes in total, the NKT Tower 3 is a feat of engineering.Liebherr Tower Crane Center an..

Next Story
Resources

GCCIA Concludes AI Forum in Kuwait with Discussions on Enhancing Power

The Gulf Cooperation Council Interconnection Authority (GCCIA), concluded its two-day regional forum held on April 29–30, 2025, under the theme, “Empowering the Future Grid: Exploring the Application of Generative AI in GCC Power Systems,” which took place in Kuwait City. The event brought together a distinguished group of global technology leaders, including GCCIA, the Saudi Electricity Company, ENOWA (NEOM’s Energy and Water Company), GCC energy authorities and utilities, as well as Microsoft, NVIDIA, Oracle, and EPRI Gulf (Electric Power Research Institute), alongside representative..

Next Story
Resources

Hindustan Zinc Accelerates Research in Emerging Zinc Battery Tech

Hindustan Zinc Limited, India’s only and the world’s largest integrated zinc producer, sees early breakthrough in the research of next-generation zinc-based battery technologies. The research targets delivering higher energy efficiency, improved safety and longer operational life. The company is pioneering emerging zinc battery technology to support the ongoing clean energy transition.Zinc has emerged as a powerful alternative to lithium owing to its abundance, stability and cost effectiveness. While the lithium market continues to face supply constraints and rising costs, zinc-based syste..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?