+
Metal-free Organic Catalyst Makes Hydrogen Fuel from Mechanical Energy
POWER & RENEWABLE ENERGY

Metal-free Organic Catalyst Makes Hydrogen Fuel from Mechanical Energy

Researchers have developed a novel, cost-effective, metal-free porous organic catalyst for efficient H2 production by harvesting mechanical energy.

In order to reduce the global warming and related impact of fossil fuels, transition towards sustainable alternatives based on renewable energy becomes increasingly critical. Green hydrogen (H?) fuel has emerged as a game-changing renewable and clean-burning energy source, which generates no direct carbon emissions and only water as a by-product when used in fuel cells. Recognising the critical role of green H2 in sustainable energy, the Government of India launched the National Green Hydrogen Mission to drive large-scale production, promote research and innovation, and position the country as a global leader in H2 economy.

Among the environmentally benign methods of H2 production, overall water splitting stands out as an e?ective and scalable technique that relies on a catalytic strategy since the reaction is energetically uphill. Piezocatalysis has emerged as a promising catalytic technology which harvests mechanical perturbations with a piezoelectric material to generate charge carriers that are utilised to catalyse water splitting.

In recent groundbreaking research work, Professor Tapas K Maji from Chemistry and Physics of Materials Unit at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru (an autonomous institution under the Department of Science & Technology, Govt. of India) and his research team have developed a metal-free donor-acceptor based covalent-organic framework (COF) for piezocatalytic water splitting. This study published in Advanced Functional Materials demonstrates a Covalent organic framework (COF) built from imide linkages between organic donor molecule tris(4-aminophenyl)amine (TAPA) and acceptor molecule pyromellitic dianhydride (PDA) acceptor exhibiting unique ferrielectric (FiE) ordering, which showed efficient piezocatalytic activity for water splitting to produce H2.

This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric (FE) materials as piezocatalysts for catalysing water splitting reaction. Conventional FE materials have limited charges confined at the surface only which usually lead to quick saturation of their piezocatalytic activity. In contrast, FiE ordering in a COF provides a multifold enhanced number of charges at the pore surfaces owing to the large local electric fields. The sponge-like porous structure of a COF allows the diffusion of water molecules to efficiently access and utilize these charge carriers for catalysis, giving ultra-high H2 production yields and outperforming all oxide-based inorganic piezocatalysts.

News source: PIB

Researchers have developed a novel, cost-effective, metal-free porous organic catalyst for efficient H2 production by harvesting mechanical energy. In order to reduce the global warming and related impact of fossil fuels, transition towards sustainable alternatives based on renewable energy becomes increasingly critical. Green hydrogen (H?) fuel has emerged as a game-changing renewable and clean-burning energy source, which generates no direct carbon emissions and only water as a by-product when used in fuel cells. Recognising the critical role of green H2 in sustainable energy, the Government of India launched the National Green Hydrogen Mission to drive large-scale production, promote research and innovation, and position the country as a global leader in H2 economy. Among the environmentally benign methods of H2 production, overall water splitting stands out as an e?ective and scalable technique that relies on a catalytic strategy since the reaction is energetically uphill. Piezocatalysis has emerged as a promising catalytic technology which harvests mechanical perturbations with a piezoelectric material to generate charge carriers that are utilised to catalyse water splitting. In recent groundbreaking research work, Professor Tapas K Maji from Chemistry and Physics of Materials Unit at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bengaluru (an autonomous institution under the Department of Science & Technology, Govt. of India) and his research team have developed a metal-free donor-acceptor based covalent-organic framework (COF) for piezocatalytic water splitting. This study published in Advanced Functional Materials demonstrates a Covalent organic framework (COF) built from imide linkages between organic donor molecule tris(4-aminophenyl)amine (TAPA) and acceptor molecule pyromellitic dianhydride (PDA) acceptor exhibiting unique ferrielectric (FiE) ordering, which showed efficient piezocatalytic activity for water splitting to produce H2. This discovery breaks the traditional notion of solely employing heavy or transition metal-based ferroelectric (FE) materials as piezocatalysts for catalysing water splitting reaction. Conventional FE materials have limited charges confined at the surface only which usually lead to quick saturation of their piezocatalytic activity. In contrast, FiE ordering in a COF provides a multifold enhanced number of charges at the pore surfaces owing to the large local electric fields. The sponge-like porous structure of a COF allows the diffusion of water molecules to efficiently access and utilize these charge carriers for catalysis, giving ultra-high H2 production yields and outperforming all oxide-based inorganic piezocatalysts. News source: PIB

Next Story
Infrastructure Urban

Globe Civil Wins Rs 1.73 Billion NBCC Order in Punjab

Globe Civil Projects Limited (NSE: GLOBECIVIL | BSE: 544424), a company specialising in infrastructure and non-infrastructure EPC projects across India, has secured a prestigious order worth Rs 1.73 billion from NBCC (India) Ltd. The contract involves the development of infrastructure facilities and buildings for the Central University of Punjab at Village Ghudda in Bathinda district, Punjab, on an EPC basis.The scope of work includes the construction of several key institutional and residential facilities, such as a 400-seater girls’ hostel, a 600-seater boys’ hostel, one academic block, ..

Next Story
Infrastructure Energy

NUPPL Synchronises Unit-2 of Ghatampur Project

Neyveli Uttar Pradesh Power Limited (NUPPL), a joint venture between NLC India Limited (51 per cent) and Uttar Pradesh Rajya Vidyut Utpadan Nigam Limited (49 per cent), has successfully completed the “TG Rolling & Synchronisation” of Unit-2 (660 MW) of its 1,980 MW Ghatampur Thermal Power Project. The unit was synchronised with the 765 kV grid at 00:05 hours today in a single attempt, well ahead of schedule following the completion of the steam blowing milestone.This synchronisation represents a significant milestone in the path toward Commercial Operation Declaration (COD) and highlig..

Next Story
Building Material

Shree Cement Lab Gets NABL Accreditation

Shree Cement’s Quality Control Laboratory at its Raipur facility has received accreditation from the National Accreditation Board for Testing and Calibration Laboratories (NABL), a constituent of the Quality Council of India. This marks a key milestone in the company’s ongoing commitment to maintaining the highest standards of quality, precision, and technical excellence.The accreditation, granted under ISO/IEC 17025 standards, confirms the lab’s technical competence in delivering accurate and reliable test results. It also affirms the lab’s compliance with internationally recognised t..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?