Solar paraboloid technology: Next frontier in renewable energy
POWER & RENEWABLE ENERGY

Solar paraboloid technology: Next frontier in renewable energy

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets.

Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors.

One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency.

While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels.

However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets. Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors. One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency. While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels. However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

Next Story
Resources

Ajmera Realty launches tree drive on Environment Day

Ajmera Realty & Infra India marked World Environment Day with a large-scale tree plantation initiative—Plant-with-Purpose—across its projects in Mumbai and Bangalore. The drive was inaugurated at Ajmera Manhattan and Ajmera Greenfinity in Wadala, with senior company officials and residents in attendance. The campaign encourages residents to embrace eco-conscious, self-reliant lifestyles by growing useful plants and trees within their communities. Horticulture expert Devendra Bhekar guided residents on creating and maintaining green spaces. Ajmera Realty planted over 500 trees..

Next Story
Resources

Twaron®-reinforced tyre powers Brunel’s solar race car

Teijin Aramid’s Twaron® with circular content will debut in Bridgestone’s race tyres for the 2025 Bridgestone World Solar Challenge, supporting the Brunel Solar Team’s Nuna 13 car. This marks the first use of the recycled-content aramid in a high-performance race tyre. The Twaron®-reinforced belts help enhance durability, reduce rolling resistance, and maintain lightweight strength—critical for the 3,000-km solar race across Australia. Bridgestone combines this with ENLITENTM tech and other recycled inputs to maximise environmental and performance outcomes. Teijin Aramid, a..

Next Story
Building Material

Kamdhenu Paints launches new wood coating range

Kamdhenu Paints has launched a comprehensive premium wood coating range designed for both interior and exterior applications. The collection includes high-performance solutions like Kamwood 2K PU for a rich matt or high-gloss finish, Kamwood 1K PU for clarity and stain protection, and the Kamwood Melamyne system for a smooth, durable finish. Also featured are Kamwood Wood Stains, which enhance wood grains with vibrant colour, and NC Sanding Sealer for high-build grain filling. The range is supported by Kamwood Thinners for ease of application and optimal finish. Saurabh Agarwal, MD, ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?