+
Waste Management: IIT Bhubaneswar develops Reactor
WATER & WASTE

Waste Management: IIT Bhubaneswar develops Reactor

A research team from the School of Infrastructure at the Indian Institute of Technology (IIT) Bhubaneswar has developed a pioneering solar-powered microwave pyrolysis reactor designed to recover valuable resources from both segregated and mixed waste materials, including biomass and plastics. The innovative reactor utilises microwave-assisted pyrolysis to swiftly convert waste into valuable products, such as highly porous carbonaceous material (biochar) and bio-oil, depending on the characteristics of the feedstock and operating conditions. Current solid waste management practices primarily involve incineration, biogas plants, or landfill disposal, which offer limited opportunities for recycling. Incineration, although an alternative to landfilling, often results in significant environmental pollution due to the release of toxic gases and ashes. The microwave-assisted pyrolysis technology developed by IIT Bhubaneswar is seen as a promising solution to these challenges. Dr. Remya Neelancherry, the lead researcher of the project, explained that microwave-assisted pyrolysis is a technology capable of producing valuable end products like biochar, bio-oil, and syngas in a very short amount of time, addressing the urgent need for sustainable waste management. The research at IIT Bhubaneswar is focused on the feasibility and applicability of these end products across various sectors, including agriculture, transportation, and energy production. An Indian patent has been granted for this technology. Dr. Remya elaborated on the working principles of the technology, stating that this emerging technology utilises microwave radiation to generate homogeneous heat within the feedstock, enabling efficient conversion into valuable end products at a faster rate with precise control over reactions. Furthermore, the reactor operates entirely on solar power, ensuring sustainability and self-reliance without imposing any additional energy demands. This novel, mobile technology requires minimal footprint area and is capable of converting waste at a rate of 10 kg/h into high-value end-products. Its mobility facilitates decentralised waste management. Moreover, the technology is carbon-neutral, providing investors with a direct opportunity to generate carbon credits. The end products of this process, biochar and bio-oil, have a wide range of applications, from healthcare to agriculture and industrial uses. Studies suggest that biochar could be a promising replacement for coal, while bio-oil can serve as an alternative to petroleum products. The conversion of high-heating-value refuse into these energy products can support efforts to achieve net-zero emissions and meet the IPCC?s (Intergovernmental Panel on Climate Change) 2?C global warming challenge. Other significant applications of biochar include soil improvement, slow-release fertilisers, carbon capture, and wastewater treatment. This environmentally-friendly technology can be implemented by municipalities and industries across various locations within cities, offering the potential to generate significant revenue with minimal pollution compared to incineration and other conventional waste management techniques.

Dr. Remya concluded by stating that, depending on the waste management needs, this technology can be implemented in two forms: with a fixed bed reactor or a fluidised bed reactor. Research indicates promising potential for this technology to positively impact the alternative energy market, and investors are encouraged to explore this technology, which ensures environmental protection while fostering market growth.

Your next big infra connection is waiting at RAHSTA 2025 – Asia’s Biggest Roads & Highways Expo, Jio World Convention Centre, Mumbai. Don’t miss out!

A research team from the School of Infrastructure at the Indian Institute of Technology (IIT) Bhubaneswar has developed a pioneering solar-powered microwave pyrolysis reactor designed to recover valuable resources from both segregated and mixed waste materials, including biomass and plastics. The innovative reactor utilises microwave-assisted pyrolysis to swiftly convert waste into valuable products, such as highly porous carbonaceous material (biochar) and bio-oil, depending on the characteristics of the feedstock and operating conditions. Current solid waste management practices primarily involve incineration, biogas plants, or landfill disposal, which offer limited opportunities for recycling. Incineration, although an alternative to landfilling, often results in significant environmental pollution due to the release of toxic gases and ashes. The microwave-assisted pyrolysis technology developed by IIT Bhubaneswar is seen as a promising solution to these challenges. Dr. Remya Neelancherry, the lead researcher of the project, explained that microwave-assisted pyrolysis is a technology capable of producing valuable end products like biochar, bio-oil, and syngas in a very short amount of time, addressing the urgent need for sustainable waste management. The research at IIT Bhubaneswar is focused on the feasibility and applicability of these end products across various sectors, including agriculture, transportation, and energy production. An Indian patent has been granted for this technology. Dr. Remya elaborated on the working principles of the technology, stating that this emerging technology utilises microwave radiation to generate homogeneous heat within the feedstock, enabling efficient conversion into valuable end products at a faster rate with precise control over reactions. Furthermore, the reactor operates entirely on solar power, ensuring sustainability and self-reliance without imposing any additional energy demands. This novel, mobile technology requires minimal footprint area and is capable of converting waste at a rate of 10 kg/h into high-value end-products. Its mobility facilitates decentralised waste management. Moreover, the technology is carbon-neutral, providing investors with a direct opportunity to generate carbon credits. The end products of this process, biochar and bio-oil, have a wide range of applications, from healthcare to agriculture and industrial uses. Studies suggest that biochar could be a promising replacement for coal, while bio-oil can serve as an alternative to petroleum products. The conversion of high-heating-value refuse into these energy products can support efforts to achieve net-zero emissions and meet the IPCC?s (Intergovernmental Panel on Climate Change) 2?C global warming challenge. Other significant applications of biochar include soil improvement, slow-release fertilisers, carbon capture, and wastewater treatment. This environmentally-friendly technology can be implemented by municipalities and industries across various locations within cities, offering the potential to generate significant revenue with minimal pollution compared to incineration and other conventional waste management techniques. Dr. Remya concluded by stating that, depending on the waste management needs, this technology can be implemented in two forms: with a fixed bed reactor or a fluidised bed reactor. Research indicates promising potential for this technology to positively impact the alternative energy market, and investors are encouraged to explore this technology, which ensures environmental protection while fostering market growth.

Next Story
Infrastructure Urban

Delivering metals in 24 hours with AI

India’s metal supply chain has long struggled with delays, fragmentation and lack of transparency, forcing purchase teams to chase vendors and juggle uncertain stock. Enlight Metals is tackling these inefficiencies with an AI-powered aggregation platform, multilingual voice-enabled procurement and strategically located dark stores that enable 24-hour delivery – transforming how OEMs, EPCs and infrastructure players source their metals. In a conversation with CW, Dhananjay Goel, Director, and Vedant Goel, Director, shares how the company is reshaping procurement. What problem..

Next Story
Infrastructure Urban

Silvin's CPVC Additive Gets NSF® Certification for Safety

Silvin Additives, a prominent manufacturer of PVC and CPVC additives, has secured the NSF® Guideline 533 certification for its CPVC Super1Pack formulation. This certification affirms the additive’s compliance with stringent international health and safety standards for products intended for drinking water applications.Awarded by NSF, a globally respected public health and safety authority based in Michigan, United States, the certification is granted only after rigorous product testing and inspection. NSF® Guideline 533 specifically assesses the safety of chemical ingredients used in produ..

Next Story
Infrastructure Urban

Mitsubishi Halts Offshore Wind Projects in Japan

Mitsubishi Corporation (MC) has announced its decision to withdraw from three major offshore wind projects off the coast of Japan due to a significant shift in global business conditions. The projects were being developed through a consortium led by its subsidiary, Mitsubishi Corporation Offshore Wind Ltd., and were located off the shores of Noshiro City, Mitane Town, and Oga City in Akita Prefecture; Yurihonjo City in Akita Prefecture; and Choshi City in Chiba Prefecture.The company stated that following a review initiated in February 2025, it concluded the projects were no longer viable. The..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?