Scientists find use of thin metals could improve energy storage capacity
POWER & RENEWABLE ENERGY

Scientists find use of thin metals could improve energy storage capacity

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Next Story
Resources

Ajmera Realty launches tree drive on Environment Day

Ajmera Realty & Infra India marked World Environment Day with a large-scale tree plantation initiative—Plant-with-Purpose—across its projects in Mumbai and Bangalore. The drive was inaugurated at Ajmera Manhattan and Ajmera Greenfinity in Wadala, with senior company officials and residents in attendance. The campaign encourages residents to embrace eco-conscious, self-reliant lifestyles by growing useful plants and trees within their communities. Horticulture expert Devendra Bhekar guided residents on creating and maintaining green spaces. Ajmera Realty planted over 500 trees..

Next Story
Resources

Twaron®-reinforced tyre powers Brunel’s solar race car

Teijin Aramid’s Twaron® with circular content will debut in Bridgestone’s race tyres for the 2025 Bridgestone World Solar Challenge, supporting the Brunel Solar Team’s Nuna 13 car. This marks the first use of the recycled-content aramid in a high-performance race tyre. The Twaron®-reinforced belts help enhance durability, reduce rolling resistance, and maintain lightweight strength—critical for the 3,000-km solar race across Australia. Bridgestone combines this with ENLITENTM tech and other recycled inputs to maximise environmental and performance outcomes. Teijin Aramid, a..

Next Story
Building Material

Kamdhenu Paints launches new wood coating range

Kamdhenu Paints has launched a comprehensive premium wood coating range designed for both interior and exterior applications. The collection includes high-performance solutions like Kamwood 2K PU for a rich matt or high-gloss finish, Kamwood 1K PU for clarity and stain protection, and the Kamwood Melamyne system for a smooth, durable finish. Also featured are Kamwood Wood Stains, which enhance wood grains with vibrant colour, and NC Sanding Sealer for high-build grain filling. The range is supported by Kamwood Thinners for ease of application and optimal finish. Saurabh Agarwal, MD, ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?