Scientists find use of thin metals could improve energy storage capacity
POWER & RENEWABLE ENERGY

Scientists find use of thin metals could improve energy storage capacity

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Next Story
Infrastructure Urban

3i Infotech Reports Rs 7.25 Bn Revenue for FY25

3i Infotech, a leading provider of digital transformation, technology services and technology solutions, announced its consolidated financial results for the fourth quarter and full year FY25, ended on March 31st, 2025. The company maintained its growth momentum, displaying consistent progress for the 3rd consecutive quarter.In Q4 FY25, 3i Infotech reported revenue of Rs 1.87 billion, reflecting steady performance compared to Rs 1.81 billion in Q3 FY25 and Rs 1.97 billion in Q4 FY24. The company delivered strong profitability improvements, with gross margin growing by 14.8 per cent Q-o-Q and 1..

Next Story
Infrastructure Urban

Emerald Finance Joins Baya PTE to Boost SME Bill Discounting

Emerald Finance is a dynamic company offering a spectrum of financial products and services including its flagship Earned Wage Access (EWA) in India, has entered into a strategic partnership with Singapore-based Baya PTE through its Indian subsidiary. This collaboration aims to strengthen bill discounting services for Small and Medium Enterprises (SMEs), enabling faster access to working capital and improved cash flow management.The initiative is designed to support SMEs that supply to large corporates such as JSW Steel, Delhivery, and PVR INOX, among others. By facilitating timely invoice dis..

Next Story
Infrastructure Urban

BLS E-Services Crosses Rs 5 Bn Revenue Mark in FY25

BLS E-Services, a technology-enabled digital service provider, announced its audited consolidated financial results for the quarter and full year period ended 31 March 2025.Speaking about the performance and recent updates, Shikhar Aggarwal, Chairman, BLS E- Services said, “We are delighted to report a remarkable performance in FY25, as we achieved several milestones during the fiscal year. FY25 marked our highest-ever financial performance, as we surpassed Rs 5 billion milestone in Total Income during the year, which was reported at Rs 5.45 billion, a notable YoY growth of 76 per cent. The ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?