MITWPU Announces Novel Hydrogen Production From Sugarcane Juice
Company News

MITWPU Announces Novel Hydrogen Production From Sugarcane Juice

MIT World Peace University (MITWPU) has made significant advancements in sustainable energy research, with two pioneering projects: a novel process for generating green hydrogen directly from sugarcane juice and an innovative batch reactor system for biodiesel production using agro waste based heterogeneous catalysts. These developments underscore MITWPU’s commitment to India's green energy transition and sustainable future.  
 
The university has developed a unique process to generate hydrogen from sugarcane juice using microorganisms, which also converts carbon dioxide into acetic acid, making it more sustainable. This research supports Government’s Green Hydrogen Mission and offers sugar industries an opportunity to produce hydrogen, reducing dependence on imported fossil fuels.
A patent has already been submitted for this technology. This project proposal has been submitted to the Ministry of Non-Conventional Energy (MNRE) for funding.  The centre of excellence on green hydrogen has also been submitted to MNRE, Government of India. 
 
Dr Bharat Kale, Emeritus Professor & Director of Material Science [COE]s said “The university’s bioprocess operates at room temperature using sugarcane juice, sea water, and wastewater, contributing to global efforts to reduce hydrogen costs to $1/kg. Unlike conventional water-splitting methods, this process generates valuable byproducts, ensuring zero discharge and making it a viable solution for India’s energy transition. We are seeking industry partners for lab-scale development and eventual technology transfer.”
 
The work on hydrogen storage is also in progress using Metallo-organic framework (MOF).  The MOFs for hydrogen storage and CO2 captures has been focused intensely. 
 
The university aims to support industries in scaling up the technology, which could be commercially viable within a year. The project is led by researchers Dr Sagar Kanekar, Dr Bharat Kale, Dr Anand Kulkarni, Prof. Niraj Topare, Dr Santosh Patil, Dr Dev Thapa, Dr Biswas and Dr Ratnadip Joshi. 
 
In addition, MITWPU has developed an operational efficient batch reactor system for sustainable biodiesel production using an agro-waste-based heterogeneous catalyst. This catalyst and system have been patented which has offered an environmentally friendly solution by eliminating waste generation and utilising agricultural residues into affordable and efficient catalyst. The porous structure of the catalyst increases surface area, improving efficiency and give thermal stability during production.  
 
Dr Kale added: “Biodiesel produced through this system serves as an economical alternative to fossil fuels. The patent covers both the catalyst and process design, ensuring efficiency in production. While industry partnerships are still in discussion, commercialisation is expected within six months of technology transfer. Large-scale biodiesel production will rely on industry adoption, supported by government policies. The process contributes to India’s efforts to reduce greenhouse gas emissions and transition to renewable energy, particularly in states like Punjab and Haryana, where biomass burning is a concern.”
 
These projects are spearheaded by Prof. Niraj Topare, Dr Santosh Patil, and Dr Bharat Kale. Both innovations highlight the sustainable energy solutions, offering viable alternatives to fossil fuels while supporting India’s green energy transition. The university continues to seek industry collaborations to accelerate the commercialisation of these technologies.

MIT World Peace University (MITWPU) has made significant advancements in sustainable energy research, with two pioneering projects: a novel process for generating green hydrogen directly from sugarcane juice and an innovative batch reactor system for biodiesel production using agro waste based heterogeneous catalysts. These developments underscore MITWPU’s commitment to India's green energy transition and sustainable future.   The university has developed a unique process to generate hydrogen from sugarcane juice using microorganisms, which also converts carbon dioxide into acetic acid, making it more sustainable. This research supports Government’s Green Hydrogen Mission and offers sugar industries an opportunity to produce hydrogen, reducing dependence on imported fossil fuels.A patent has already been submitted for this technology. This project proposal has been submitted to the Ministry of Non-Conventional Energy (MNRE) for funding.  The centre of excellence on green hydrogen has also been submitted to MNRE, Government of India.  Dr Bharat Kale, Emeritus Professor & Director of Material Science [COE]s said “The university’s bioprocess operates at room temperature using sugarcane juice, sea water, and wastewater, contributing to global efforts to reduce hydrogen costs to $1/kg. Unlike conventional water-splitting methods, this process generates valuable byproducts, ensuring zero discharge and making it a viable solution for India’s energy transition. We are seeking industry partners for lab-scale development and eventual technology transfer.” The work on hydrogen storage is also in progress using Metallo-organic framework (MOF).  The MOFs for hydrogen storage and CO2 captures has been focused intensely.  The university aims to support industries in scaling up the technology, which could be commercially viable within a year. The project is led by researchers Dr Sagar Kanekar, Dr Bharat Kale, Dr Anand Kulkarni, Prof. Niraj Topare, Dr Santosh Patil, Dr Dev Thapa, Dr Biswas and Dr Ratnadip Joshi.  In addition, MITWPU has developed an operational efficient batch reactor system for sustainable biodiesel production using an agro-waste-based heterogeneous catalyst. This catalyst and system have been patented which has offered an environmentally friendly solution by eliminating waste generation and utilising agricultural residues into affordable and efficient catalyst. The porous structure of the catalyst increases surface area, improving efficiency and give thermal stability during production.   Dr Kale added: “Biodiesel produced through this system serves as an economical alternative to fossil fuels. The patent covers both the catalyst and process design, ensuring efficiency in production. While industry partnerships are still in discussion, commercialisation is expected within six months of technology transfer. Large-scale biodiesel production will rely on industry adoption, supported by government policies. The process contributes to India’s efforts to reduce greenhouse gas emissions and transition to renewable energy, particularly in states like Punjab and Haryana, where biomass burning is a concern.” These projects are spearheaded by Prof. Niraj Topare, Dr Santosh Patil, and Dr Bharat Kale. Both innovations highlight the sustainable energy solutions, offering viable alternatives to fossil fuels while supporting India’s green energy transition. The university continues to seek industry collaborations to accelerate the commercialisation of these technologies.

Next Story
Infrastructure Urban

DDA Approves Rs 87.2 Billion Budget for 2025-26

The Delhi Development Authority (DDA) has approved a budget of Rs 87.2 billion for the financial year 2025-26, with a strong emphasis on civic infrastructure development, green space rejuvenation, housing, and sports facilities, according to an official statement. Chaired by Lieutenant Governor V.K. Saxena, the budget meeting highlighted several large-scale projects, including the revitalisation of the Yamuna floodplain, creation of expansive parks, and upgraded civic amenities. Out of the total outlay, Rs 41.4 billion has been earmarked for capital expenditure, covering new roads, infrastruc..

Next Story
Infrastructure Energy

Vi Taps Cisco to Power Next-Gen Network

Telecom operator Vodafone Idea (Vi) has joined hands with US-based tech major Cisco Systems to revamp its transport network infrastructure across India. The strategic partnership aims to enhance network performance, scalability, and user experience for both retail and enterprise customers. As part of the agreement, Vi will deploy Cisco’s advanced Multiprotocol Label Switching (MPLS) technology to create a high-capacity, software-driven transport network. This will significantly improve the telecom player’s ability to manage surging data traffic and support data-heavy digital services such..

Next Story
Building Material

GPT Infra Commissions New Steel Girder Plant Near Kolkata

GPT Infraprojects announced the successful commissioning of its steel girder and components manufacturing facility in West Bengal on April 24, 2025. Located in Village Majinan, Hooghly district—about 60 km from Kolkata—the plant begins operations with an initial capacity of 10,000 metric tonnes per annum (MTPA). The company stated that the facility is in the process of securing RDSO (Research Designs and Standards Organisation) approval for manufacturing steel bridge girders. Once approved, this unit is expected to become a key asset for the company’s steel bridge segment, catering to c..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?