MITWPU Announces Novel Hydrogen Production From Sugarcane Juice
Company News

MITWPU Announces Novel Hydrogen Production From Sugarcane Juice

MIT World Peace University (MITWPU) has made significant advancements in sustainable energy research, with two pioneering projects: a novel process for generating green hydrogen directly from sugarcane juice and an innovative batch reactor system for biodiesel production using agro waste based heterogeneous catalysts. These developments underscore MITWPU’s commitment to India's green energy transition and sustainable future.  
 
The university has developed a unique process to generate hydrogen from sugarcane juice using microorganisms, which also converts carbon dioxide into acetic acid, making it more sustainable. This research supports Government’s Green Hydrogen Mission and offers sugar industries an opportunity to produce hydrogen, reducing dependence on imported fossil fuels.
A patent has already been submitted for this technology. This project proposal has been submitted to the Ministry of Non-Conventional Energy (MNRE) for funding.  The centre of excellence on green hydrogen has also been submitted to MNRE, Government of India. 
 
Dr Bharat Kale, Emeritus Professor & Director of Material Science [COE]s said “The university’s bioprocess operates at room temperature using sugarcane juice, sea water, and wastewater, contributing to global efforts to reduce hydrogen costs to $1/kg. Unlike conventional water-splitting methods, this process generates valuable byproducts, ensuring zero discharge and making it a viable solution for India’s energy transition. We are seeking industry partners for lab-scale development and eventual technology transfer.”
 
The work on hydrogen storage is also in progress using Metallo-organic framework (MOF).  The MOFs for hydrogen storage and CO2 captures has been focused intensely. 
 
The university aims to support industries in scaling up the technology, which could be commercially viable within a year. The project is led by researchers Dr Sagar Kanekar, Dr Bharat Kale, Dr Anand Kulkarni, Prof. Niraj Topare, Dr Santosh Patil, Dr Dev Thapa, Dr Biswas and Dr Ratnadip Joshi. 
 
In addition, MITWPU has developed an operational efficient batch reactor system for sustainable biodiesel production using an agro-waste-based heterogeneous catalyst. This catalyst and system have been patented which has offered an environmentally friendly solution by eliminating waste generation and utilising agricultural residues into affordable and efficient catalyst. The porous structure of the catalyst increases surface area, improving efficiency and give thermal stability during production.  
 
Dr Kale added: “Biodiesel produced through this system serves as an economical alternative to fossil fuels. The patent covers both the catalyst and process design, ensuring efficiency in production. While industry partnerships are still in discussion, commercialisation is expected within six months of technology transfer. Large-scale biodiesel production will rely on industry adoption, supported by government policies. The process contributes to India’s efforts to reduce greenhouse gas emissions and transition to renewable energy, particularly in states like Punjab and Haryana, where biomass burning is a concern.”
 
These projects are spearheaded by Prof. Niraj Topare, Dr Santosh Patil, and Dr Bharat Kale. Both innovations highlight the sustainable energy solutions, offering viable alternatives to fossil fuels while supporting India’s green energy transition. The university continues to seek industry collaborations to accelerate the commercialisation of these technologies.

MIT World Peace University (MITWPU) has made significant advancements in sustainable energy research, with two pioneering projects: a novel process for generating green hydrogen directly from sugarcane juice and an innovative batch reactor system for biodiesel production using agro waste based heterogeneous catalysts. These developments underscore MITWPU’s commitment to India's green energy transition and sustainable future.   The university has developed a unique process to generate hydrogen from sugarcane juice using microorganisms, which also converts carbon dioxide into acetic acid, making it more sustainable. This research supports Government’s Green Hydrogen Mission and offers sugar industries an opportunity to produce hydrogen, reducing dependence on imported fossil fuels.A patent has already been submitted for this technology. This project proposal has been submitted to the Ministry of Non-Conventional Energy (MNRE) for funding.  The centre of excellence on green hydrogen has also been submitted to MNRE, Government of India.  Dr Bharat Kale, Emeritus Professor & Director of Material Science [COE]s said “The university’s bioprocess operates at room temperature using sugarcane juice, sea water, and wastewater, contributing to global efforts to reduce hydrogen costs to $1/kg. Unlike conventional water-splitting methods, this process generates valuable byproducts, ensuring zero discharge and making it a viable solution for India’s energy transition. We are seeking industry partners for lab-scale development and eventual technology transfer.” The work on hydrogen storage is also in progress using Metallo-organic framework (MOF).  The MOFs for hydrogen storage and CO2 captures has been focused intensely.  The university aims to support industries in scaling up the technology, which could be commercially viable within a year. The project is led by researchers Dr Sagar Kanekar, Dr Bharat Kale, Dr Anand Kulkarni, Prof. Niraj Topare, Dr Santosh Patil, Dr Dev Thapa, Dr Biswas and Dr Ratnadip Joshi.  In addition, MITWPU has developed an operational efficient batch reactor system for sustainable biodiesel production using an agro-waste-based heterogeneous catalyst. This catalyst and system have been patented which has offered an environmentally friendly solution by eliminating waste generation and utilising agricultural residues into affordable and efficient catalyst. The porous structure of the catalyst increases surface area, improving efficiency and give thermal stability during production.   Dr Kale added: “Biodiesel produced through this system serves as an economical alternative to fossil fuels. The patent covers both the catalyst and process design, ensuring efficiency in production. While industry partnerships are still in discussion, commercialisation is expected within six months of technology transfer. Large-scale biodiesel production will rely on industry adoption, supported by government policies. The process contributes to India’s efforts to reduce greenhouse gas emissions and transition to renewable energy, particularly in states like Punjab and Haryana, where biomass burning is a concern.” These projects are spearheaded by Prof. Niraj Topare, Dr Santosh Patil, and Dr Bharat Kale. Both innovations highlight the sustainable energy solutions, offering viable alternatives to fossil fuels while supporting India’s green energy transition. The university continues to seek industry collaborations to accelerate the commercialisation of these technologies.

Next Story
Infrastructure Transport

L&T Seeks to Sell Hyderabad Metro Stake Amid Financial Losses

Infrastructure major Larsen & Toubro Limited (L&T) has expressed its intention to sell its stake, exceeding 90 per cent, in the L&T Hyderabad Metro Rail project to either the state or central government through a new Special Purpose Vehicle (SPV), citing operational and accumulated losses.In a letter addressed to the Ministry of Housing and Urban Affairs (MoHUA), L&T Metro Rail stated that despite repeated follow-ups, the Telangana government has not provided the expected financial assistance. The delay is worsening the financial distress of the concessionaire, making the situa..

Next Story
Infrastructure Transport

Ixigo Launches Delhi Metro Ticketing on Its Trains App

Online travel aggregator (OTA) ixigo has partnered with the Delhi Metro Rail Corporation (DMRC) and the Open Network for Digital Commerce (ONDC) to launch Delhi Metro ticketing on the ixigo Trains app on 12 September.As part of the collaboration, ixigo Trains now offers QR-based metro tickets with in-app payments. Users can plan and book end-to-end journeys across trains, buses, flights, hotels and now metro services on a single platform.The DMRC operates nearly 400 km of network across more than a dozen lines, making it India’s largest and busiest metro system. In August 2025, it recorded i..

Next Story
Infrastructure Transport

Mumbai’s Metro Line 3 Nears Completion After Safety Inspection

Mumbai’s first fully underground metro line, Mumbai Metro Line 3, has moved closer to becoming fully operational as the Commissioner of Metro Railway Safety (CMRS) initiated the inspection of the last section of the Aqua Line, spanning from Worli to Cuffe Parade, on 12 September.Once this section receives safety clearance from CMRS, the entire Mumbai Metro Line 3 will be opened for passengers. According to officials, the inspection report is expected to be finalised by next week, after which the commission will conduct a final verification. Once the remaining 10.99 km stretch is approved, pa..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?