Innovation helped construct Delhi-Meerut Expressway Package 3
ROADS & HIGHWAYS

Innovation helped construct Delhi-Meerut Expressway Package 3

Union Minister for Road Transport & Highways and MSMEs Nitin Gadkari recently inaugurated Package 3 of the Delhi-Meerut Expressway, built at a civil cost of Rs 10.57 billion. The project is expected to help decongest the NCR, reduce travel time and heavy traffic jams in this section, and bring a significant reduction in the pollution level owing to lower fuel consumption.

The APCO Chetak Expressway JV executed work on this package. Innovative planning, design and construction methods marked the construction of the viaduct of this project for reducing construction time by the selection of materials, technology and sequence of operations.

The aim
The construction scheme was evolved looking at the traffic congestion, safety, traffic management through the construction zone and safety of commuters and mitigation of environment parameters. Hence, highlights Sanjay Shrivastava, Vice President, APCO Chetak Expressway, it was decided that maximum off-site activities would be promoted, such as:

Precast pre-stressed I-girders (28.1-m x 1.9-m-high) in casting yard.
Precast pier caps in two parts 7.6 m each (cantilever length of 8.4 m). Section sizes were selected for ease of construction, handling and erection (mostly weight governed).
A module of continuous integrated span totaling to 90 m (3 x 30 m) has intermediate piers, are monolithic with the deck and the deck is made to rest on free bearing only on expansion joints. The foundation pile cap required to support the elevated viaduct structure of 7.3 m x 7.3 m, accommodating eight piles of 1,000 mm dia, at every 30 m centre to centre. The size of pier is 1.6 m x 6 m, with a pier cap of 22.8-m-long. The top deck slab of 25.65 m has a base of seven I-shaped PSC girders, stationed on the pier cap.

Construction methodology
The viaduct part of the project involved construction of 1,097 precast pre-stressed I-girders of 1.9 m height, 310 precast post-stressed pier caps 7.6 m x 3.0 m, 1,148 piles (cast in-situ) of 1,000 mm x 24-m-deep, 157 pile caps (cast in-situ) 7.3 m x 7.3 m, 157 piers (cast in-situ) 1.6 m x 6 m, deck slab (cast in-situ) 156 nos x 30 m x 25.65 m, 120,042 sq m, 416 pot bearing and 104 guided bearing, single strip seal expansion joint – 53 nos.

The structural scheme developed mainly considered maximum off site activities, and assembling it in-place, says Shrivastava. “It was decided to construct girders in ‘precast casting yard’ of 12,000 sq m, having 12 beds, for three girders casting at a time at one bed. The expected production is 108 girders per month and staking capacity of 220 nos. It was arrived that in case of reduction of cycle time, the girder production can be increased to 180 nos per month by using early setting admixture or application of steam curing. Accordingly, four boilers (600 kg) were also commissioned for steam or hot water curing. The precast pier cap casting unit was also developed with 25 beds, for a production cycle of 25 nos per month. A steel cutting bending and binding automatic yard was conceived (50 m x 18 m), accommodating a shear line, a bend line, a straightening machine, three automatic stirrup benders, spiral, etc.”

The key construction activities and parameters that helped complete the project in a record time are:

  • Casting of precast pre-tensioned girders – off-site
  • Casting of precast post-stressed pier caps – off-site
  • Drilling for piles – in-situ
  • Fabrication of cages – off-site
  • Casting of piles – in-situ
  • Casting of pile caps – in-situ
  • Casting of piers – in-situ
  • Stitching and cast in-situ pier cap in flange over pier – in-situ
  • Stitching and casting of precast pier cap in web portion – in-situ
  • Post stressing three stage of pier caps – in-situ
  • Erection of girders by gantries
  • Erection of precast pier cap by gantries
  • Girder stitching with pier cap – in-situ
  • Casting of deck slab – in-situ
  • Finishing

Adds Shrivastava, “All the above mentioned activities are in a series, but by selecting two major activities as precast activities – I-girders and pier caps – they are operational on parallel basis. By these two precast activities the working width on the actual road reduced to 8.5 m in the road centre, with free flowing traffic on either side. The erection of precast I-girders and pier caps are being done with the help of gantries (tracks at 30 m centre to centre) instead of crane launching, thereby reducing the stoppage of traffic.”

Innovative improvisation
When asked what is the USP of the innovation and what were the improvised construction techniques to obtain ‘the aim’, Shrivastava elaborates:

a. Pre-cast girders at casting yard three numbers at a time, resulting in excellent and precision quality factory like output of I-girders.
b. Using of two gantries in casting yard to achieve higher quality and efficient production output.
c. High grade RCC, M55 grade with micro silica and admixture, to obtain early strength of 45 N per sq mm, within four to five days, required for de-stressing the HT cables, and early de-moulding.
d. Use of steam boilers for gaining early strength is an improvement technique lifted from working in cold country techniques.
e. Completion of pier cap in seven stages of construction work is a new innovation in the field of road construction. The detailed stages are as: (1) Pre-casting of left pier cap segment (2) Pre-casting of right pier cap     segment (3) Stitching and casting of flange porting over pier (4) Stitching and casting of web portion (5) Stressing of two cables of the pier cap after completion of casting, thereby removing of bottom supports        (6) Stressing of next two cables of the pier cap after erection of seven I-girders (7) Stressing of the last two cables of the pier cap after completion of deck slab casting (8) Pre-stressing the pier cap and removal of      bottom supports.
f. Erection of I-Girders (seven nos in one span) over the pier cap.
g. Use of deck sheet for deck slab casting.

The above methodology resulted in ease of construction at site by breaking down of activities and has largely resulted in decreased traffic congestion, increased safety, better traffic management through the construction zone, safety of commuters and better mitigation of environment parameters.

Most importantly, the pioneered technologies used in this project are easy to adopt and do not attract any upfront working capital. “This innovation will leave a lasting impression on every forthcoming project in the nation on state and national highways. It will be an extraordinary practice, if adapted in road construction,” prides Shrivastava.

- SERAPHINA D’SOUZA

Union Minister for Road Transport & Highways and MSMEs Nitin Gadkari recently inaugurated Package 3 of the Delhi-Meerut Expressway, built at a civil cost of Rs 10.57 billion. The project is expected to help decongest the NCR, reduce travel time and heavy traffic jams in this section, and bring a significant reduction in the pollution level owing to lower fuel consumption. The APCO Chetak Expressway JV executed work on this package. Innovative planning, design and construction methods marked the construction of the viaduct of this project for reducing construction time by the selection of materials, technology and sequence of operations. The aim The construction scheme was evolved looking at the traffic congestion, safety, traffic management through the construction zone and safety of commuters and mitigation of environment parameters. Hence, highlights Sanjay Shrivastava, Vice President, APCO Chetak Expressway, it was decided that maximum off-site activities would be promoted, such as: Precast pre-stressed I-girders (28.1-m x 1.9-m-high) in casting yard. Precast pier caps in two parts 7.6 m each (cantilever length of 8.4 m). Section sizes were selected for ease of construction, handling and erection (mostly weight governed). A module of continuous integrated span totaling to 90 m (3 x 30 m) has intermediate piers, are monolithic with the deck and the deck is made to rest on free bearing only on expansion joints. The foundation pile cap required to support the elevated viaduct structure of 7.3 m x 7.3 m, accommodating eight piles of 1,000 mm dia, at every 30 m centre to centre. The size of pier is 1.6 m x 6 m, with a pier cap of 22.8-m-long. The top deck slab of 25.65 m has a base of seven I-shaped PSC girders, stationed on the pier cap. Construction methodology The viaduct part of the project involved construction of 1,097 precast pre-stressed I-girders of 1.9 m height, 310 precast post-stressed pier caps 7.6 m x 3.0 m, 1,148 piles (cast in-situ) of 1,000 mm x 24-m-deep, 157 pile caps (cast in-situ) 7.3 m x 7.3 m, 157 piers (cast in-situ) 1.6 m x 6 m, deck slab (cast in-situ) 156 nos x 30 m x 25.65 m, 120,042 sq m, 416 pot bearing and 104 guided bearing, single strip seal expansion joint – 53 nos. The structural scheme developed mainly considered maximum off site activities, and assembling it in-place, says Shrivastava. “It was decided to construct girders in ‘precast casting yard’ of 12,000 sq m, having 12 beds, for three girders casting at a time at one bed. The expected production is 108 girders per month and staking capacity of 220 nos. It was arrived that in case of reduction of cycle time, the girder production can be increased to 180 nos per month by using early setting admixture or application of steam curing. Accordingly, four boilers (600 kg) were also commissioned for steam or hot water curing. The precast pier cap casting unit was also developed with 25 beds, for a production cycle of 25 nos per month. A steel cutting bending and binding automatic yard was conceived (50 m x 18 m), accommodating a shear line, a bend line, a straightening machine, three automatic stirrup benders, spiral, etc.” The key construction activities and parameters that helped complete the project in a record time are: Casting of precast pre-tensioned girders – off-siteCasting of precast post-stressed pier caps – off-site Drilling for piles – in-situ Fabrication of cages – off-site Casting of piles – in-situ Casting of pile caps – in-situ Casting of piers – in-situ Stitching and cast in-situ pier cap in flange over pier – in-situ Stitching and casting of precast pier cap in web portion – in-situ Post stressing three stage of pier caps – in-situ Erection of girders by gantries Erection of precast pier cap by gantries Girder stitching with pier cap – in-situ Casting of deck slab – in-situ Finishing Adds Shrivastava, “All the above mentioned activities are in a series, but by selecting two major activities as precast activities – I-girders and pier caps – they are operational on parallel basis. By these two precast activities the working width on the actual road reduced to 8.5 m in the road centre, with free flowing traffic on either side. The erection of precast I-girders and pier caps are being done with the help of gantries (tracks at 30 m centre to centre) instead of crane launching, thereby reducing the stoppage of traffic.” Innovative improvisation When asked what is the USP of the innovation and what were the improvised construction techniques to obtain ‘the aim’, Shrivastava elaborates: a. Pre-cast girders at casting yard three numbers at a time, resulting in excellent and precision quality factory like output of I-girders. b. Using of two gantries in casting yard to achieve higher quality and efficient production output. c. High grade RCC, M55 grade with micro silica and admixture, to obtain early strength of 45 N per sq mm, within four to five days, required for de-stressing the HT cables, and early de-moulding. d. Use of steam boilers for gaining early strength is an improvement technique lifted from working in cold country techniques. e. Completion of pier cap in seven stages of construction work is a new innovation in the field of road construction. The detailed stages are as: (1) Pre-casting of left pier cap segment (2) Pre-casting of right pier cap     segment (3) Stitching and casting of flange porting over pier (4) Stitching and casting of web portion (5) Stressing of two cables of the pier cap after completion of casting, thereby removing of bottom supports        (6) Stressing of next two cables of the pier cap after erection of seven I-girders (7) Stressing of the last two cables of the pier cap after completion of deck slab casting (8) Pre-stressing the pier cap and removal of      bottom supports. f. Erection of I-Girders (seven nos in one span) over the pier cap. g. Use of deck sheet for deck slab casting. The above methodology resulted in ease of construction at site by breaking down of activities and has largely resulted in decreased traffic congestion, increased safety, better traffic management through the construction zone, safety of commuters and better mitigation of environment parameters. Most importantly, the pioneered technologies used in this project are easy to adopt and do not attract any upfront working capital. “This innovation will leave a lasting impression on every forthcoming project in the nation on state and national highways. It will be an extraordinary practice, if adapted in road construction,” prides Shrivastava. - SERAPHINA D’SOUZA

Next Story
Infrastructure Urban

India To Invest $37 Billion To Boost Petrochemical Capacity

India is set to become a major global player in the petrochemicals industry, driven by a planned capital expenditure of $37 billion (Rs 3.1 trillion) aimed at reducing import dependency and enhancing self-sufficiency, according to S&P Global Ratings.In its latest report titled “First China, Now India: Self-Sufficiency Goals Will Add To Petrochemicals Supply”, S&P said India’s large-scale capacity expansion—mirroring China’s earlier push—will likely intensify oversupply pressures in Asia’s petrochemical markets.Currently the world’s third-largest petrochemical consumer a..

Next Story
Infrastructure Transport

Indian Railways Expands Global Exports Of Rail Equipment

Indian Railways has announced that it is rapidly emerging as a global exporter of railway equipment, including bogies, coaches, locomotives, and propulsion systems, under the government’s ‘Make in India, Make for the World’ initiative.According to an official statement, India’s railway products are now reaching over 16 international markets, reflecting the country’s growing capacity to design, develop, and deliver world-class rail solutions.Metro coaches have been exported to Australia and Canada; bogies to the United Kingdom, Saudi Arabia, France, and Australia; propulsion systems t..

Next Story
Infrastructure Transport

RailTel Awards Rs 163 Million Contract To RTNS Technology

RailTel Corporation of India Limited (RailTel), a Mini Ratna Public Sector Undertaking, has awarded a domestic work order worth Rs 163 million to RTNS Technology Private Limited.The contract, issued on 30 September 2025, involves the supply and installation of equipment and related services for one of RailTel’s key customers. The project underscores RailTel’s commitment to advancing technology and communication infrastructure through collaboration with domestic system integrators.RTNS Technology Private Limited, an ISO-certified system integrator, provides comprehensive solutions for perim..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?