+
 IIT Jodhpur emphasises on cooling power in nuclear power plants safety
POWER & RENEWABLE ENERGY

IIT Jodhpur emphasises on cooling power in nuclear power plants safety

In light of historical nuclear disasters, a team of international researchers led by the Indian Institute of Technology (IIT) Jodhpur has recognised the importance of cooling power sources for the safety of nuclear power plants. They have proposed the use of offshore wind farms as seismically resilient alternative power sources. The researchers demonstrated the viability of this approach by utilising sustainable wind power to enhance the reliability of cooling power at the Madras Atomic Power Station in Chennai.

The proposed methodology, outlined in an article published in the journal Nuclear Engineering and Design, consists of several stages. It begins with estimating the coolant power requirements of nuclear reactors, followed by designing an offshore wind turbine and its associated infrastructure. Subsequently, a seismic safety evaluation is conducted for the chosen offshore wind turbine site, considering various scenario levels.

The team of researchers, which includes experts from the University of Surrey in the UK, Tsinghua University, and the Institute of Engineering Mechanics in China, suggests the implementation of a 15 MW offshore wind farm with three NREL 5 MW turbines supported by monopile foundations in the Kalpakkam area. This setup could serve as an additional emergency backup power source to meet the cooling power needs of existing nuclear power plants.

The monopile foundation of the offshore wind turbines is analysed under anticipated dynamic loading conditions, taking into account soil nonlinearity and seismic liquefaction using advanced numerical models. The results of the nonlinear integrated seismic analyses indicate that the proposed offshore wind turbines exhibit satisfactory seismic performance when comparing the monopile mudline displacements and bending moments.

Dr Pradeep Kumar Dammala, Assistant Professor at the Department of Civil and Infrastructure Engineering, IIT Jodhpur, emphasised the significance of enhancing the safety of nuclear structures in India due to the country's pursuit of nuclear energy development and the presence of seismic and tsunami threats in close proximity. He stated that the suggested approach presented an excellent framework for evaluating the seismic resilience of nuclear power plants and integrating wind energy sources during interconnected events like earthquakes and tsunamis.

India has seven Nuclear Power Plants, with five situated in seismically active zones III and IV, and three located in coastal areas susceptible to hazards such as tsunamis and cyclones. The Madras Atomic Power Station in Kalpakkam, which houses two 220 MW FBRs, serves as an example of a nuclear power plant in a vulnerable area.

Also Read
Government of Himachal Pradesh invites tenders for Civil Works
PVVNL invites bids for electrical works in Moradabad Zone


In light of historical nuclear disasters, a team of international researchers led by the Indian Institute of Technology (IIT) Jodhpur has recognised the importance of cooling power sources for the safety of nuclear power plants. They have proposed the use of offshore wind farms as seismically resilient alternative power sources. The researchers demonstrated the viability of this approach by utilising sustainable wind power to enhance the reliability of cooling power at the Madras Atomic Power Station in Chennai. The proposed methodology, outlined in an article published in the journal Nuclear Engineering and Design, consists of several stages. It begins with estimating the coolant power requirements of nuclear reactors, followed by designing an offshore wind turbine and its associated infrastructure. Subsequently, a seismic safety evaluation is conducted for the chosen offshore wind turbine site, considering various scenario levels. The team of researchers, which includes experts from the University of Surrey in the UK, Tsinghua University, and the Institute of Engineering Mechanics in China, suggests the implementation of a 15 MW offshore wind farm with three NREL 5 MW turbines supported by monopile foundations in the Kalpakkam area. This setup could serve as an additional emergency backup power source to meet the cooling power needs of existing nuclear power plants. The monopile foundation of the offshore wind turbines is analysed under anticipated dynamic loading conditions, taking into account soil nonlinearity and seismic liquefaction using advanced numerical models. The results of the nonlinear integrated seismic analyses indicate that the proposed offshore wind turbines exhibit satisfactory seismic performance when comparing the monopile mudline displacements and bending moments. Dr Pradeep Kumar Dammala, Assistant Professor at the Department of Civil and Infrastructure Engineering, IIT Jodhpur, emphasised the significance of enhancing the safety of nuclear structures in India due to the country's pursuit of nuclear energy development and the presence of seismic and tsunami threats in close proximity. He stated that the suggested approach presented an excellent framework for evaluating the seismic resilience of nuclear power plants and integrating wind energy sources during interconnected events like earthquakes and tsunamis. India has seven Nuclear Power Plants, with five situated in seismically active zones III and IV, and three located in coastal areas susceptible to hazards such as tsunamis and cyclones. The Madras Atomic Power Station in Kalpakkam, which houses two 220 MW FBRs, serves as an example of a nuclear power plant in a vulnerable area. Also Read Government of Himachal Pradesh invites tenders for Civil WorksPVVNL invites bids for electrical works in Moradabad Zone

Next Story
Infrastructure Transport

Lucknow Metro East-West Corridor Consultancy Contract Awarded

The Uttar Pradesh Metro Rail Corporation has awarded the first construction-related consultancy contract for the Lucknow Metro East West Corridor to a joint venture of AYESA Ingenieria Arquitectura SAU and AYESA India Pvt Ltd. The firm was declared the lowest bidder for the Detailed Design Consultant contract for Lucknow Metro Line-2 under Phase 1B and the contract was recommended following the financial bid. The contract is valued at Rs 159.0 million (mn), covering design services for the corridor. Lucknow Metro Line-2 envisages the construction of an 11.165 kilometre corridor connecting Cha..

Next Story
Infrastructure Urban

Div Com Kashmir Urges Fast Tracking Of Jhelum Water Transport Project

The Divisional Commissioner of Kashmir has called for the fast-tracking of the Jhelum water transport project, urging district administrations and relevant agencies to accelerate planning and clearances. In a meeting convened at the divisional headquarters, the commissioner instructed officials from irrigation, public health engineering and municipal departments to prioritise the project and coordinate survey and design work. The directive emphasised removal of administrative bottlenecks and close monitoring to ensure timely mobilisation of resources and contractors. Officials were told to in..

Next Story
Infrastructure Urban

Interarch Reports Strong Q3 And Nine Month Results

Interarch Building Solutions Limited reported unaudited results for the third quarter and nine months ended 31 December 2025, recording strong revenue growth driven by execution and a robust order book. Net revenue for the third quarter rose by 43.7 per cent to Rs 5.225 billion (bn), compared with Rs 3.636 bn a year earlier, reflecting heightened demand in pre-engineered building projects. The company’s total order book as at 31 January 2026 stood at Rs 16.85 bn, supporting near-term visibility. EBITDA excluding other income for the quarter increased by 43.2 per cent to Rs 503 million (mn),..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Open In App