Solar Innovation: Laser-Doping Technique Elevates Cell Performance
POWER & RENEWABLE ENERGY

Solar Innovation: Laser-Doping Technique Elevates Cell Performance

Researchers from the International Solar Energy Research Center (ISC) Konstanz and Delft University of Technology have devised a method to improve the efficiency of solar cells, specifically Interdigitated Back Contact (IBC) cells, by selectively increasing the thickness of certain parts of the rear end. They achieved this through a novel laser doping process, which enhances oxidation in specific areas of the IBC solar cells' backside. This novel technique involves laser-doping the backside of IBC solar cells, creating selective areas of enhanced oxidation. The process improves efficiency and acts as a protective layer during further manufacturing stages, streamlining production and making solar technology more commercially viable.

The method leverages the enhanced oxidation properties found under locally laser-doped regions with high concentrations of phosphorus, achieved through phosphosilicate glass layers. This advancement holds promise for improving the efficiency of these cells.

IBC cells, first developed in the early 1970s, have become a staple as the non-illuminated side of solar cells. They offer advantages over conventional both-side contact cells by eliminating optical shading losses caused by metal finger and bus bars on the front side, resulting in higher short-circuit current density and simplified cell interconnection inside modules.

This architectural design enables a more comprehensive range of front surface texturing and light trapping schemes, making IBC cells ideal for mechanically stacked tandem cells with higher-band gap technologies such as Perovskites.

Notably, the Fraunhofer Institute for Solar Energy Systems in Germany achieved a record conversion efficiency rate of 26% for both-sided-contacted silicon solar cells in 2021, favoured for their simplicity in industrial production.

In another breakthrough last September, researchers from Fraunhofer Institute for Solar Energy Research ISE (Fraunhofer ISE) and NWO-Institute AMOLF developed a multi-junction solar cell boasting a record 36.1% efficiency. This involved stacking multiple layers of light-absorbing materials to capture various segments of the sunlight's colour spectrum efficiently.

Researchers from the International Solar Energy Research Center (ISC) Konstanz and Delft University of Technology have devised a method to improve the efficiency of solar cells, specifically Interdigitated Back Contact (IBC) cells, by selectively increasing the thickness of certain parts of the rear end. They achieved this through a novel laser doping process, which enhances oxidation in specific areas of the IBC solar cells' backside. This novel technique involves laser-doping the backside of IBC solar cells, creating selective areas of enhanced oxidation. The process improves efficiency and acts as a protective layer during further manufacturing stages, streamlining production and making solar technology more commercially viable. The method leverages the enhanced oxidation properties found under locally laser-doped regions with high concentrations of phosphorus, achieved through phosphosilicate glass layers. This advancement holds promise for improving the efficiency of these cells. IBC cells, first developed in the early 1970s, have become a staple as the non-illuminated side of solar cells. They offer advantages over conventional both-side contact cells by eliminating optical shading losses caused by metal finger and bus bars on the front side, resulting in higher short-circuit current density and simplified cell interconnection inside modules. This architectural design enables a more comprehensive range of front surface texturing and light trapping schemes, making IBC cells ideal for mechanically stacked tandem cells with higher-band gap technologies such as Perovskites. Notably, the Fraunhofer Institute for Solar Energy Systems in Germany achieved a record conversion efficiency rate of 26% for both-sided-contacted silicon solar cells in 2021, favoured for their simplicity in industrial production. In another breakthrough last September, researchers from Fraunhofer Institute for Solar Energy Research ISE (Fraunhofer ISE) and NWO-Institute AMOLF developed a multi-junction solar cell boasting a record 36.1% efficiency. This involved stacking multiple layers of light-absorbing materials to capture various segments of the sunlight's colour spectrum efficiently.

Next Story
Resources

Skyview by Empyrean is Making Benchmarks in the Indian Ropeway Industry

FIL Industries Private Limited, the parent company of Empyrean Skyview Projects that pioneered ropeway mobility solutions in India with Jammu’s Skyview Gondola, is currently developing the Dehradun-Mussoorie ropeway and is on track to complete Phase I by September 2026. The ropeway is set to be India’s longest passenger aerial monocable covering 5.8 km between the foothills of Dehradun in Purkulgam and MDDA taxi stand in the hills of Mussoorie in just under 20 minutes. The firm pioneered green mobility solutions in India with the development of the flagship Skyview Gondola in Jam..

Next Story
Technology

Creativity is for Humans, Productivity is for Robots!

On most construction sites, the rhythm of progress is measured by the clang of steel, the hum of machinery and the sweat of thousands. But increasingly, new sounds are entering the mix: the quiet efficiency of algorithms, the hum of drones overhead, and the precision of robotic arms at work. Behind the concrete and cables, an invisible force is taking hold: data. It is turning blueprints into living simulations, managing fleets of machines, and helping engineers make decisions before a single brick is laid. This is not the construction of tomorrow; it is the architecture of today – built on ..

Next Story
Infrastructure Urban

Bhartiya Urban Unveils ‘Bhartiya Converge’ GCC Enablement Platform

Bhartiya Urban has launched Bhartiya Converge, its latest business venture designed to become India’s premier platform for enabling Global Capability Centres (GCCs). The initiative offers an integrated ecosystem aimed at helping global clients gain a competitive edge in today’s rapidly evolving business environment. Focused on enhancing turnaround time and operational efficiencies, the company seeks to deliver better business outcomes powered by top-tier talent. Bhartiya Converge presents a customised and integrated suite of microservices that addresses the nuanced and evolving operational..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?