+
Solar Innovation: Laser-Doping Technique Elevates Cell Performance
POWER & RENEWABLE ENERGY

Solar Innovation: Laser-Doping Technique Elevates Cell Performance

Researchers from the International Solar Energy Research Center (ISC) Konstanz and Delft University of Technology have devised a method to improve the efficiency of solar cells, specifically Interdigitated Back Contact (IBC) cells, by selectively increasing the thickness of certain parts of the rear end. They achieved this through a novel laser doping process, which enhances oxidation in specific areas of the IBC solar cells' backside. This novel technique involves laser-doping the backside of IBC solar cells, creating selective areas of enhanced oxidation. The process improves efficiency and acts as a protective layer during further manufacturing stages, streamlining production and making solar technology more commercially viable.

The method leverages the enhanced oxidation properties found under locally laser-doped regions with high concentrations of phosphorus, achieved through phosphosilicate glass layers. This advancement holds promise for improving the efficiency of these cells.

IBC cells, first developed in the early 1970s, have become a staple as the non-illuminated side of solar cells. They offer advantages over conventional both-side contact cells by eliminating optical shading losses caused by metal finger and bus bars on the front side, resulting in higher short-circuit current density and simplified cell interconnection inside modules.

This architectural design enables a more comprehensive range of front surface texturing and light trapping schemes, making IBC cells ideal for mechanically stacked tandem cells with higher-band gap technologies such as Perovskites.

Notably, the Fraunhofer Institute for Solar Energy Systems in Germany achieved a record conversion efficiency rate of 26% for both-sided-contacted silicon solar cells in 2021, favoured for their simplicity in industrial production.

In another breakthrough last September, researchers from Fraunhofer Institute for Solar Energy Research ISE (Fraunhofer ISE) and NWO-Institute AMOLF developed a multi-junction solar cell boasting a record 36.1% efficiency. This involved stacking multiple layers of light-absorbing materials to capture various segments of the sunlight's colour spectrum efficiently.

Researchers from the International Solar Energy Research Center (ISC) Konstanz and Delft University of Technology have devised a method to improve the efficiency of solar cells, specifically Interdigitated Back Contact (IBC) cells, by selectively increasing the thickness of certain parts of the rear end. They achieved this through a novel laser doping process, which enhances oxidation in specific areas of the IBC solar cells' backside. This novel technique involves laser-doping the backside of IBC solar cells, creating selective areas of enhanced oxidation. The process improves efficiency and acts as a protective layer during further manufacturing stages, streamlining production and making solar technology more commercially viable. The method leverages the enhanced oxidation properties found under locally laser-doped regions with high concentrations of phosphorus, achieved through phosphosilicate glass layers. This advancement holds promise for improving the efficiency of these cells. IBC cells, first developed in the early 1970s, have become a staple as the non-illuminated side of solar cells. They offer advantages over conventional both-side contact cells by eliminating optical shading losses caused by metal finger and bus bars on the front side, resulting in higher short-circuit current density and simplified cell interconnection inside modules. This architectural design enables a more comprehensive range of front surface texturing and light trapping schemes, making IBC cells ideal for mechanically stacked tandem cells with higher-band gap technologies such as Perovskites. Notably, the Fraunhofer Institute for Solar Energy Systems in Germany achieved a record conversion efficiency rate of 26% for both-sided-contacted silicon solar cells in 2021, favoured for their simplicity in industrial production. In another breakthrough last September, researchers from Fraunhofer Institute for Solar Energy Research ISE (Fraunhofer ISE) and NWO-Institute AMOLF developed a multi-junction solar cell boasting a record 36.1% efficiency. This involved stacking multiple layers of light-absorbing materials to capture various segments of the sunlight's colour spectrum efficiently.

Next Story
Infrastructure Urban

India to Invest Rs 600 Billion to Upgrade 1,000 ITIs

As part of its drive to modernise vocational training, the Ministry of Skill Development and Entrepreneurship (MSDE), in collaboration with Gujarat’s Labour and Employment Department, held a State-Level Workshop at the NAMTECH Campus within IIT-Gandhinagar to discuss the National Scheme for ITI Upgradation.The consultation brought together key stakeholders from industry and the training ecosystem to align expectations and support implementation of the scheme, which aims to transform 1,000 Industrial Training Institutes (ITIs) across India using a hub-and-spoke model. The total outlay stands ..

Next Story
Infrastructure Urban

India Unveils Rs 600 Billion Maritime Finance Push

The Ministry of Ports, Shipping & Waterways (MoPSW) hosted the Maritime Financing Summit 2025 in New Delhi, bringing together over 250 stakeholders including policymakers, industry leaders, global investors, and financial institutions. The summit, held under the ambit of Maritime Amrit Kaal Vision (MAKV) 2047, focused on transforming India into a leading maritime power with strengthened financial, infrastructural, and technological capabilities.Union Minister Sarbananda Sonowal emphasised India's strategic progress, noting that average port turnaround times have dropped from four days to u..

Next Story
Infrastructure Urban

Govt Allocates Rs 500 Million To Boost Community Radio

The Central Government, through its ‘Supporting Community Radio Movement in India’ scheme, has allocated Rs 500 million to strengthen the community radio ecosystem across the country. The initiative aims to assist both newly established and long-operational Community Radio Stations (CRSs), ensuring their relevance to local educational, social, cultural, and developmental needs.According to the policy published by the Ministry of Information and Broadcasting, CRSs may be set up by not-for-profit organisations with at least three years of demonstrated community service. These stations are ex..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?