IIT Guwahati develops sustainable geopolymer
WATER & WASTE

IIT Guwahati develops sustainable geopolymer

A research team at the Indian Institute of Technology Guwahati, led by Prof. Anil K. Mishra from the Department of Civil Engineering, has developed an innovative solution to two major global challenges: industrial waste management and sustainable construction. Their research focuses on creating a geopolymer using industrial byproducts and waste materials, such as water treatment sludge (WTS), fly ash (FA), and ground granulated blast furnace slag (GGBS).

“With the rapid pace of urbanisation and industrialisation, managing industrial waste has become a critical global issue," said IIT Guwahati in a press release. "Among the various types of industrial waste, water treatment sludge poses significant challenges due to its high water content and organic components. Water treatment plants worldwide generate approximately 100,000 metric tonnes of sludge daily. Traditional disposal methods, like landfilling or using sludge as soil additives, have proven to be costly and environmentally risky, as heavy metals can leach into groundwater," added the release.

Speaking on the research, Prof. Anil K. Mishra said, "Our research provides a solution by converting WTS and industrial byproducts like fly ash and GGBS into a geopolymer.

Geopolymers are renowned for their high strength, durability, and minimal environmental impact. Through the process of geopolymerization, silicon and aluminium from these materials react with alkaline activators to form a three-dimensional alumino-silicate structure. This results in a material that matches traditional cement in performance while significantly reducing carbon emissions and energy consumption." The findings of this study were published in the prestigious journal Construction and Building Materials, co-authored by Prof. Anil K. Mishra and his research scholars Alok Bijalwan and Bitupan Sonowal from IIT Guwahati. "One of the key applications of the WTS-FA-GGBS geopolymer is in road construction. The research team evaluated the mechanical properties of the geopolymer, specifically its suitability as a subgrade material for roads and pavements. The subgrade layer forms the foundation of roads, determining the pavement's strength and longevity. Using the WTS-based geopolymer as a stabilizer was found to significantly enhance road performance, particularly in soft or weak soils. In addition to WTS, the team is also focused on geopolymerising construction and demolition (C&D) waste, which exceeds 10 billion tonnes annually and constitutes over 35 per cent of global waste. They have developed applications for C&D waste, including base and subbase layers for road pavements and paver blocks, contributing to effective waste management and reduced environmental impact," said the statement.

Furthermore, the team is investigating the treatment of landfill-mined fine fractions from old municipal solid waste dumpsites, offering promising solutions while supporting circular economy initiatives. "They are also exploring the stabilisation of petroleum sludge by incorporating fly ash and GGBS, aiming to immobilise hazardous heavy metals and prevent environmental leaching. Tests conducted by the IIT Guwahati team, including Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) assessments, revealed that the WTS-FA-GGBS geopolymer exceeds the minimum strength requirements for cement-stabilised subgrade materials. Durability tests confirmed its ability to withstand extreme environmental conditions, making it a reliable choice for infrastructure projects across diverse climates. Crucially, the geopolymer is nontoxic.

Leaching tests demonstrated that heavy metal concentrations in the geopolymer leachate are well within the safety limits set by the U.S. Environmental Protection Agency (USEPA), ensuring that it poses no risks to the environment or human health, even in large-scale applications," said in the statement. This research by Prof. Mishra's team addresses several key concerns in modern civil engineering and waste management. By recycling industrial waste, the project helps reduce landfill burden and minimises the environmental damage caused by traditional disposal methods. The innovative geopolymer technology opens new avenues for industries, municipalities, and governments to adopt eco-friendly construction practices while addressing the growing issue of industrial waste disposal. As India continues to urbanise and industrialise, innovations like this play a vital role in building a greener, more sustainable future.

A research team at the Indian Institute of Technology Guwahati, led by Prof. Anil K. Mishra from the Department of Civil Engineering, has developed an innovative solution to two major global challenges: industrial waste management and sustainable construction. Their research focuses on creating a geopolymer using industrial byproducts and waste materials, such as water treatment sludge (WTS), fly ash (FA), and ground granulated blast furnace slag (GGBS). “With the rapid pace of urbanisation and industrialisation, managing industrial waste has become a critical global issue, said IIT Guwahati in a press release. Among the various types of industrial waste, water treatment sludge poses significant challenges due to its high water content and organic components. Water treatment plants worldwide generate approximately 100,000 metric tonnes of sludge daily. Traditional disposal methods, like landfilling or using sludge as soil additives, have proven to be costly and environmentally risky, as heavy metals can leach into groundwater, added the release. Speaking on the research, Prof. Anil K. Mishra said, Our research provides a solution by converting WTS and industrial byproducts like fly ash and GGBS into a geopolymer. Geopolymers are renowned for their high strength, durability, and minimal environmental impact. Through the process of geopolymerization, silicon and aluminium from these materials react with alkaline activators to form a three-dimensional alumino-silicate structure. This results in a material that matches traditional cement in performance while significantly reducing carbon emissions and energy consumption. The findings of this study were published in the prestigious journal Construction and Building Materials, co-authored by Prof. Anil K. Mishra and his research scholars Alok Bijalwan and Bitupan Sonowal from IIT Guwahati. One of the key applications of the WTS-FA-GGBS geopolymer is in road construction. The research team evaluated the mechanical properties of the geopolymer, specifically its suitability as a subgrade material for roads and pavements. The subgrade layer forms the foundation of roads, determining the pavement's strength and longevity. Using the WTS-based geopolymer as a stabilizer was found to significantly enhance road performance, particularly in soft or weak soils. In addition to WTS, the team is also focused on geopolymerising construction and demolition (C&D) waste, which exceeds 10 billion tonnes annually and constitutes over 35 per cent of global waste. They have developed applications for C&D waste, including base and subbase layers for road pavements and paver blocks, contributing to effective waste management and reduced environmental impact, said the statement. Furthermore, the team is investigating the treatment of landfill-mined fine fractions from old municipal solid waste dumpsites, offering promising solutions while supporting circular economy initiatives. They are also exploring the stabilisation of petroleum sludge by incorporating fly ash and GGBS, aiming to immobilise hazardous heavy metals and prevent environmental leaching. Tests conducted by the IIT Guwahati team, including Unconfined Compressive Strength (UCS) and California Bearing Ratio (CBR) assessments, revealed that the WTS-FA-GGBS geopolymer exceeds the minimum strength requirements for cement-stabilised subgrade materials. Durability tests confirmed its ability to withstand extreme environmental conditions, making it a reliable choice for infrastructure projects across diverse climates. Crucially, the geopolymer is nontoxic. Leaching tests demonstrated that heavy metal concentrations in the geopolymer leachate are well within the safety limits set by the U.S. Environmental Protection Agency (USEPA), ensuring that it poses no risks to the environment or human health, even in large-scale applications, said in the statement. This research by Prof. Mishra's team addresses several key concerns in modern civil engineering and waste management. By recycling industrial waste, the project helps reduce landfill burden and minimises the environmental damage caused by traditional disposal methods. The innovative geopolymer technology opens new avenues for industries, municipalities, and governments to adopt eco-friendly construction practices while addressing the growing issue of industrial waste disposal. As India continues to urbanise and industrialise, innovations like this play a vital role in building a greener, more sustainable future.

Next Story
Infrastructure Transport

Mumbai-Ahmedabad Bullet Train Set to Launch by 2028

India’s first bullet train is set to revolutionize high-speed travel along the western corridor, with the Mumbai-Ahmedabad high-speed rail project aiming for a 2028 launch. This announcement marks a major milestone in India’s infrastructure goals, as it promises to reduce travel time between the two economic hubs from eight hours to just three.Spanning a planned 508-kilometre stretch, the corridor stands as a flagship example of Indo-Japanese collaboration in technology and engineering. Once operational, the train is expected to transform intercity mobility and place India among the select..

Next Story
Infrastructure Transport

Mumbai-Gandhinagar Train Service Enhances Passenger Capacity

The Mumbai Central–Gandhinagar Capital Vande Bharat Express has increased its passenger capacity by adding four additional AC chair car coaches to meet the growing commuter demand on one of India’s busiest business corridors. This upgrade, effective from 11 May, raised the train’s seating capacity from 1,128 to 1,440 passengers, allowing it to serve 936 more passengers daily in both directions. The increase was described as a practical measure to accommodate the surging demand on the busy Mumbai–Ahmedabad–Gandhinagar route, which regularly operates at over 150 percent seat occupancy...

Next Story
Infrastructure Urban

Delhi Plans 12 Sewage Plants to Clean Najafgarh Drain Efficiently

Delhi’s ambitious plan to improve the water quality of the Yamuna River has gained significant momentum as the Delhi Jal Board (DJB) has begun work on 12 new sewage treatment plants (STPs) aimed at reducing the volume of untreated sewage being discharged from the Najafgarh Drain.This initiative forms part of the ongoing efforts to clean the Yamuna and restore the river’s health, which has long been a critical environmental issue for the national capital. Given the alarming pollution levels in the Yamuna, experts and officials consider this project a vital step toward addressing the persist..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?