MIT-WPU Develops Safer Hydrogen Transport Technology
Technology

MIT-WPU Develops Safer Hydrogen Transport Technology

Researchers at MIT World Peace University (MIT-WPU) have developed a safer and more cost-effective technology for transporting hydrogen, addressing a major bottleneck in India’s clean energy transition. The team has engineered a Liquid Organic Hydrogen Carrier (LOHC) system that allows hydrogen to be transported in a stable, non-flammable and non-explosive liquid form under normal temperature and pressure conditions.

The breakthrough removes one of the key barriers to the large-scale adoption of hydrogen, which has long been constrained by safety risks and high transportation costs. Traditionally, hydrogen must be compressed at extremely high pressures or liquefied at temperatures below minus 253 degrees Celsius, both of which require complex infrastructure and significant investment.

According to Prof. (Dr.) Rajib Kumar Sinharay, Principal Investigator, the research demanded exceptional persistence. Initial experiments showed no visible results for nearly fifty days, but after close to ten months and around one hundred trials, the team achieved a milestone that has not been previously documented. He noted that building an entirely new methodology from scratch was challenging, but ultimately demonstrated the value of sustained scientific effort.

The project began when Ohm Cleantech Private Limited (OCPL), part of the h2e Power Group, approached MIT-WPU to solve a problem that had remained unresolved even at leading institutions. With no existing documented methodology in India or globally, the researchers and OCPL jointly conceptualised and developed the process. Details of the innovation remain confidential as the company proceeds with international patent filings.

OCPL founder Siddharth Mayur said the progress marks a significant step towards safe, innovative and scalable hydrogen transport. He added that the company is keen to commercialise the technology in alignment with the National Green Hydrogen Mission and the vision of Atmanirbhar Bharat.

MIT-WPU’s LOHC system works through a two-stage chemical process. During hydrogenation, hydrogen is chemically bonded into a specially designed organic liquid, enabling safe storage and transport. At the destination, the dehydrogenation process releases the hydrogen, while the carrier liquid remains reusable. This approach allows hydrogen to be handled using existing fuel tankers, storage systems and potentially standard pipelines, sharply reducing costs and operational risks.

Laboratory trials have delivered results that place India at the forefront of LOHC research. The team achieved complete hydrogen storage within two hours, compared with up to eighteen hours reported in global studies. The process operated at 130 degrees Celsius and a pressure of 56 bar, lower than conventional benchmarks. Nearly 11,000 litres of hydrogen were stored in just 15.6 litres of carrier liquid, while dehydrogenation tests recovered 86 per cent of the stored hydrogen, with further optimisation underway.

Research Advisor Prof. Datta Dandge said the ability to transport hydrogen like any other industrial liquid could remove long-standing safety and regulatory barriers, accelerating the country’s hydrogen mission and transforming clean-energy logistics for transport and heavy industry.

The research was conducted at MIT-WPU’s advanced hydrogen laboratory, equipped with systems capable of operating at temperatures up to 350 degrees Celsius and pressures of 200 bar. The team is now focused on refining the process and scaling it from laboratory success to industrial deployment.

Project Fellow and PhD student Nishant Patil described the work as a defining experience, adding that contributing to a breakthrough with national impact strengthened his commitment to advancing innovation in India’s clean energy ecosystem.

Researchers at MIT World Peace University (MIT-WPU) have developed a safer and more cost-effective technology for transporting hydrogen, addressing a major bottleneck in India’s clean energy transition. The team has engineered a Liquid Organic Hydrogen Carrier (LOHC) system that allows hydrogen to be transported in a stable, non-flammable and non-explosive liquid form under normal temperature and pressure conditions. The breakthrough removes one of the key barriers to the large-scale adoption of hydrogen, which has long been constrained by safety risks and high transportation costs. Traditionally, hydrogen must be compressed at extremely high pressures or liquefied at temperatures below minus 253 degrees Celsius, both of which require complex infrastructure and significant investment. According to Prof. (Dr.) Rajib Kumar Sinharay, Principal Investigator, the research demanded exceptional persistence. Initial experiments showed no visible results for nearly fifty days, but after close to ten months and around one hundred trials, the team achieved a milestone that has not been previously documented. He noted that building an entirely new methodology from scratch was challenging, but ultimately demonstrated the value of sustained scientific effort. The project began when Ohm Cleantech Private Limited (OCPL), part of the h2e Power Group, approached MIT-WPU to solve a problem that had remained unresolved even at leading institutions. With no existing documented methodology in India or globally, the researchers and OCPL jointly conceptualised and developed the process. Details of the innovation remain confidential as the company proceeds with international patent filings. OCPL founder Siddharth Mayur said the progress marks a significant step towards safe, innovative and scalable hydrogen transport. He added that the company is keen to commercialise the technology in alignment with the National Green Hydrogen Mission and the vision of Atmanirbhar Bharat. MIT-WPU’s LOHC system works through a two-stage chemical process. During hydrogenation, hydrogen is chemically bonded into a specially designed organic liquid, enabling safe storage and transport. At the destination, the dehydrogenation process releases the hydrogen, while the carrier liquid remains reusable. This approach allows hydrogen to be handled using existing fuel tankers, storage systems and potentially standard pipelines, sharply reducing costs and operational risks. Laboratory trials have delivered results that place India at the forefront of LOHC research. The team achieved complete hydrogen storage within two hours, compared with up to eighteen hours reported in global studies. The process operated at 130 degrees Celsius and a pressure of 56 bar, lower than conventional benchmarks. Nearly 11,000 litres of hydrogen were stored in just 15.6 litres of carrier liquid, while dehydrogenation tests recovered 86 per cent of the stored hydrogen, with further optimisation underway. Research Advisor Prof. Datta Dandge said the ability to transport hydrogen like any other industrial liquid could remove long-standing safety and regulatory barriers, accelerating the country’s hydrogen mission and transforming clean-energy logistics for transport and heavy industry. The research was conducted at MIT-WPU’s advanced hydrogen laboratory, equipped with systems capable of operating at temperatures up to 350 degrees Celsius and pressures of 200 bar. The team is now focused on refining the process and scaling it from laboratory success to industrial deployment. Project Fellow and PhD student Nishant Patil described the work as a defining experience, adding that contributing to a breakthrough with national impact strengthened his commitment to advancing innovation in India’s clean energy ecosystem.

Next Story
Infrastructure Urban

Powerplay Rolls Out Procurement-Linked Credit for Contractors

Powerplay has announced the launch of Powerplay Credit, a project-linked working capital solution aimed at easing cash flow pressures faced by contractors during active construction execution. The solution has gone live across key markets in South India, with a wider national rollout planned for 2026.The launch comes amid rising activity in India’s construction sector across infrastructure, housing, industrial corridors, renewable energy and urban redevelopment. Contractors executing large corporate and government projects often face extended payment cycles, stage-based billing and delayed r..

Next Story
Infrastructure Urban

Jyoti Structures Commissions Galvanisation at Second Nashik Unit

Jyoti Structures has commissioned galvanisation operations at its second tower manufacturing unit in Nashik, strengthening its in-house capabilities across critical stages of power transmission infrastructure production. The listed Engineering, Procurement and Construction (EPC) company operates globally and has delivered projects for customers across more than 50 countries.The second Nashik unit, with an annual manufacturing capacity of 36,000 metric tonnes, has become operational following the completion of installation, testing and readiness of the new galvanising facilities. With this deve..

Next Story
Infrastructure Energy

Rosatom Connects First Kursk NPP-2 Unit to National Grid

Rosatom has launched the first power unit of the Kursk Nuclear Power Plant-2 (Kursk NPP-2) into Russia’s Unified Energy System, marking a key milestone in the country’s nuclear energy programme. The initial grid connection took place at the end of the year, bringing a new source of low-carbon electricity online for the Kursk region and the broader Central Energy System.The newly commissioned unit is the first implementation of the VVER-TOI reactor design, which incorporates advanced safety and performance features. With an installed capacity of 1,250 MW, it is the most powerful nuclear pow..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Open In App